000904368 001__ 904368
000904368 005__ 20240619091919.0
000904368 0247_ $$2doi$$a10.1103/PhysRevMaterials.5.045601
000904368 0247_ $$2ISSN$$a2475-9953
000904368 0247_ $$2ISSN$$a2476-0455
000904368 0247_ $$2datacite_doi$$a10.34734/FZJ-2021-05938
000904368 0247_ $$2WOS$$aWOS:000655931600006
000904368 037__ $$aFZJ-2021-05938
000904368 082__ $$a530
000904368 1001_ $$0P:(DE-HGF)0$$aReisz, Berthold$$b0
000904368 245__ $$aThin film growth of phase-separating phthalocyanine-fullerene blends: A combined experimental and computational study
000904368 260__ $$aCollege Park, MD$$bAPS$$c2021
000904368 3367_ $$2DRIVER$$aarticle
000904368 3367_ $$2DataCite$$aOutput Types/Journal article
000904368 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711027288_24058
000904368 3367_ $$2BibTeX$$aARTICLE
000904368 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904368 3367_ $$00$$2EndNote$$aJournal Article
000904368 520__ $$aBlended organic thin films have been studied during the last decades due to their applicability in organic solar cells. Although their optical and electronic features have been examined intensively, there is still a lack of detailed knowledge about their growth processes and resulting morphologies, which play a key role in the efficiency of optoelectronic devices such as organic solar cells. In this study, pure and blended thin films of copper phthalocyanine (CuPc) and the Buckminster fullerene (C60) were grown by vacuum deposition onto a native silicon oxide substrate at two different substrate temperatures, 310 and 400 K. The evolution of roughness was followed by in situ real-time x-ray reflectivity. Crystal orientation, island densities, and morphology were examined after the growth by x-ray diffraction experiments and microscopy techniques. The formation of a smooth wetting layer followed by rapid roughening was found in pure CuPc thin films, whereas C60 shows a fast formation of distinct islands at a very early stage of growth. The growth of needlelike CuPc crystals losing their alignment with the substrate was identified in co-deposited thin films. Furthermore, the data demonstrate that structural features become larger and more pronounced and that the island density decreases by a factor of four when going from 310 to 400 K. Finally, the key parameters roughness and island density were well reproduced on a smaller scale by kinetic Monte Carlo simulations of a generic, binary lattice model with simple nearest-neighbor interaction energies. A weak molecule-substrate interaction caused a fast island formation and weak interaction between molecules of different species was able to reproduce the observed phase separation. The introduction of different same-species and cross-species Ehrlich-Schwoebel barriers for interlayer hopping was necessary to reproduce the roughness evolution in the blend and showed the growth of CuPc crystals on top of the thin film in agreement with the experiment.
000904368 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000904368 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000904368 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
000904368 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x3
000904368 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904368 7001_ $$0P:(DE-HGF)0$$aEmpting, Eelco$$b1
000904368 7001_ $$0P:(DE-HGF)0$$aZwadlo, Matthias$$b2
000904368 7001_ $$0P:(DE-HGF)0$$aHodas, Martin$$b3
000904368 7001_ $$0P:(DE-HGF)0$$aDuva, Giuliano$$b4
000904368 7001_ $$0P:(DE-HGF)0$$aBelova, Valentina$$b5
000904368 7001_ $$0P:(DE-HGF)0$$aZeiser, Clemens$$b6
000904368 7001_ $$0P:(DE-HGF)0$$aHagenlocher, Jan$$b7
000904368 7001_ $$0P:(DE-Juel1)177680$$aMaiti, Santanu$$b8
000904368 7001_ $$0P:(DE-HGF)0$$aHinderhofer, Alexander$$b9
000904368 7001_ $$0P:(DE-HGF)0$$aGerlach, Alexander$$b10
000904368 7001_ $$0P:(DE-HGF)0$$aOettel, Martin$$b11
000904368 7001_ $$0P:(DE-HGF)0$$aSchreiber, Frank$$b12
000904368 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.5.045601$$gVol. 5, no. 4, p. 045601$$n4$$p045601$$tPhysical review materials$$v5$$x2475-9953$$y2021
000904368 8564_ $$uhttps://juser.fz-juelich.de/record/904368/files/PhysRevMaterials.5.045601.pdf$$yOpenAccess
000904368 909CO $$ooai:juser.fz-juelich.de:904368$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177680$$aForschungszentrum Jülich$$b8$$kFZJ
000904368 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000904368 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000904368 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x2
000904368 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x3
000904368 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904368 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904368 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000904368 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2019$$d2021-01-27
000904368 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904368 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904368 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904368 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904368 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904368 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904368 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904368 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000904368 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
000904368 9801_ $$aFullTexts
000904368 980__ $$ajournal
000904368 980__ $$aVDB
000904368 980__ $$aUNRESTRICTED
000904368 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000904368 980__ $$aI:(DE-Juel1)IBI-8-20200312
000904368 981__ $$aI:(DE-Juel1)JCNS-1-20110106