000904372 001__ 904372
000904372 005__ 20230123101907.0
000904372 0247_ $$2doi$$a10.1016/j.neurobiolaging.2021.06.014
000904372 0247_ $$2ISSN$$a0197-4580
000904372 0247_ $$2ISSN$$a1558-1497
000904372 0247_ $$2Handle$$a2128/32247
000904372 0247_ $$2pmid$$a34284259
000904372 0247_ $$2WOS$$aWOS:000691900600011
000904372 037__ $$aFZJ-2021-05942
000904372 082__ $$a610
000904372 1001_ $$0P:(DE-HGF)0$$aPfeil, Julia$$b0$$eCorresponding author
000904372 245__ $$aUnique regional patterns of amyloid burden predict progression to prodromal and clinical stages of Alzheimer's disease
000904372 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000904372 3367_ $$2DRIVER$$aarticle
000904372 3367_ $$2DataCite$$aOutput Types/Journal article
000904372 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667372284_15986
000904372 3367_ $$2BibTeX$$aARTICLE
000904372 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904372 3367_ $$00$$2EndNote$$aJournal Article
000904372 520__ $$aAlthough beta-amyloid (Aβ) positivity has shown to be associated with higher risk of progression to Alzheimer's disease (AD) in mild cognitive impairment (MCI), information on the time to conversion to manifest dementia cannot be readily deduced from this binary classification. Here, we assessed if regional patterns of Aβ deposition measured with 18F-florbetapir may serve as biomarker for progression risk in Aβ-positive cognitively normal (CN) and MCI patients, including clinical follow-up data and cerebrospinal fluid (CSF) biomarkers. Voxel-wise group comparisons between age and sex-matched Aβ-positive groups (i.e., CN-stables [n = 38] vs. CN-to-MCI/AD progressors [n = 38], MCI-stables [n = 104] versus MCI-to-AD progressors [n = 104]) revealed higher Aβ burden in precuneus, subcortical, and parietal regions in CN-to-MCI/AD progressors and cingulate, temporal, and frontal regions in MCI-to-AD progressors. Importantly, these regional patterns predicted progression to advanced stages on the AD spectrum in the short and the long-term beyond global Aβ burden and CSF biomarkers. These results suggest that distinct regional patterns of Aβ burden are a valuable biomarker for risk of disease progression in CN and MCI.
000904372 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904372 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000904372 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904372 7001_ $$0P:(DE-Juel1)178642$$aHoenig, Merle C.$$b1
000904372 7001_ $$0P:(DE-HGF)0$$aDoering, Elena$$b2
000904372 7001_ $$0P:(DE-HGF)0$$avan Eimeren, Thilo$$b3
000904372 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b4
000904372 7001_ $$0P:(DE-Juel1)166265$$aBischof, Gerard Nisal$$b5
000904372 7001_ $$0P:(DE-HGF)0$$aInitiative, Alzheimer's Disease Neuroimaging$$b6
000904372 773__ $$0PERI:(DE-600)1498414-3$$a10.1016/j.neurobiolaging.2021.06.014$$gVol. 106, p. 119 - 129$$p119 - 129$$tNeurobiology of aging$$v106$$x0197-4580$$y2021
000904372 8564_ $$uhttps://juser.fz-juelich.de/record/904372/files/1-s2.0-S0197458021002086-main.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000904372 8564_ $$uhttps://juser.fz-juelich.de/record/904372/files/FZJ-2021-05942_Unique%20regional%20patterns_Pfeil.docx$$yOpenAccess$$zStatID:(DE-HGF)0510
000904372 8564_ $$uhttps://juser.fz-juelich.de/record/904372/files/FZJ-2021-05942_Unique%20regional%20patterns_Pfeil_Appendix%20A.docx$$yRestricted
000904372 8564_ $$uhttps://juser.fz-juelich.de/record/904372/files/FZJ-2021-05942_Unique%20regional%20patterns_Pfeil_Appendix%20B.docx$$yRestricted
000904372 8564_ $$uhttps://juser.fz-juelich.de/record/904372/files/FZJ-2021-05942_Unique%20regional%20patterns_Pfeil_Appendix%20C.docx$$yRestricted
000904372 909CO $$ooai:juser.fz-juelich.de:904372$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904372 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany. Electronic address: julia.pfeil@uk-koeln.de.$$b0
000904372 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178642$$a Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.$$b1
000904372 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany$$b2
000904372 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany; University of Cologne, University Hospital of Cologne, Department of Neurology, Cologne, Germany$$b3
000904372 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b4$$kFZJ
000904372 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177611$$a Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany; Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany; German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany$$b4
000904372 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)166265$$a Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, University Hospital of Cologne, Cologne, Germany$$b5
000904372 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Alzheimer's Disease Neuroimaging Initiative$$b6
000904372 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904372 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000904372 9141_ $$y2022
000904372 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000904372 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904372 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROBIOL AGING : 2019$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904372 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904372 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000904372 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904372 920__ $$lyes
000904372 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000904372 980__ $$ajournal
000904372 980__ $$aVDB
000904372 980__ $$aUNRESTRICTED
000904372 980__ $$aI:(DE-Juel1)INM-2-20090406
000904372 9801_ $$aFullTexts