001     904378
005     20220224125213.0
024 7 _ |a 10.1038/s41598-021-81696-5
|2 doi
024 7 _ |a 2128/30287
|2 Handle
024 7 _ |a altmetric:98674180
|2 altmetric
024 7 _ |a pmid:33500523
|2 pmid
024 7 _ |a WOS:000667511400012
|2 WOS
037 _ _ |a FZJ-2021-05948
082 _ _ |a 600
100 1 _ |a Bloch, Carola
|0 0000-0002-5234-0336
|b 0
|e Corresponding author
245 _ _ |a Alexithymia traits outweigh autism traits in the explanation of depression in adults with autism
260 _ _ |a [London]
|c 2021
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642423367_30509
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a When contemplating the alarming depression rates in adults with autism spectrum disorder (ASD), there is a need to find factors explaining heightened symptoms of depression. Beyond the impact of autism traits, markedly increased levels of alexithymia traits should be considered as a candidate for explaining why individuals with ASD report higher levels of depressive symptoms. Here, we aim to identify the extent to which autism or alexithymia traits indicate depressive symptoms in ASD and whether the pattern of association are specific to ASD. Data of a large (N = 400) representative clinical population of adults referred to autism diagnostics have been investigated and split by cases with a confirmed ASD diagnosis (N = 281) and cases with a ruled out ASD diagnosis (N = 119). Dominance analysis revealed the alexithymia factor, difficulties in identifying feelings, as the strongest predictor for depressive symptomatology in ASD, outweighing autism traits and other alexithymia factors. This pattern of prediction was not specific to ASD and was shared by clinical controls from the referral population with a ruled out ASD diagnosis. Thus, the association of alexithymia traits with depression is not unique to ASD and may constitute a general psychopathological mechanism in clinical samples.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Burghof, Lana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lehnhardt, Fritz-Georg
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vogeley, Kai
|0 P:(DE-Juel1)176404
|b 3
|u fzj
700 1 _ |a Falter-Wagner, Christine
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1038/s41598-021-81696-5
|g Vol. 11, no. 1, p. 2258
|0 PERI:(DE-600)2615211-3
|n 1
|p 2258
|t Scientific reports
|v 11
|y 2021
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/904378/files/s41598-021-81696-5.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904378
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176404
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21