000904379 001__ 904379
000904379 005__ 20220224125213.0
000904379 0247_ $$2doi$$a10.1002/hbm.25637
000904379 0247_ $$2ISSN$$a1065-9471
000904379 0247_ $$2ISSN$$a1097-0193
000904379 0247_ $$2Handle$$a2128/30288
000904379 0247_ $$2altmetric$$aaltmetric:112178544
000904379 0247_ $$2pmid$$apmid:34418200
000904379 0247_ $$2WOS$$aWOS:000686925900001
000904379 037__ $$aFZJ-2021-05949
000904379 082__ $$a610
000904379 1001_ $$00000-0002-3090-6183$$aChen, Siyi$$b0$$eCorresponding author
000904379 245__ $$aFeedback from lateral occipital cortex to V1 / V2 triggers object completion: Evidence from functional magnetic resonance imaging and dynamic causal modeling
000904379 260__ $$aNew York, NY$$bWiley-Liss$$c2021
000904379 3367_ $$2DRIVER$$aarticle
000904379 3367_ $$2DataCite$$aOutput Types/Journal article
000904379 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642424068_26836
000904379 3367_ $$2BibTeX$$aARTICLE
000904379 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904379 3367_ $$00$$2EndNote$$aJournal Article
000904379 520__ $$aIllusory figures demonstrate the visual system's ability to integrate disparate parts into coherent wholes. We probed this object integration process by either presenting an integrated diamond shape or a comparable ungrouped configuration that did not render a complete object. Two tasks were used that either required localization of a target dot (relative to the presented configuration) or discrimination of the dot's luminance. The results showed that only when the configuration was task relevant (in the localization task), performance benefited from the presentation of an integrated object. Concurrent functional magnetic resonance imaging was performed and analyzed using dynamic causal modeling to investigate the (causal) relationship between regions that are associated with illusory figure completion. We found object-specific feedback connections between the lateral occipital cortex (LOC) and early visual cortex (V1/V2). These modulatory connections persisted across task demands and hemispheres. Our results thus provide direct evidence that interactions between mid-level and early visual processing regions engage in illusory figure perception. These data suggest that LOC first integrates inputs from multiple neurons in lower-level cortices, generating a global shape representation while more fine-graded object details are then determined via feedback to early visual areas, independently of the current task demands.
000904379 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904379 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904379 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b1$$ufzj
000904379 7001_ $$0P:(DE-Juel1)171481$$aZeng, Hang$$b2
000904379 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b3$$ufzj
000904379 7001_ $$0P:(DE-HGF)0$$aMüller, Hermann J.$$b4
000904379 7001_ $$0P:(DE-HGF)0$$aConci, Markus$$b5
000904379 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.25637$$gVol. 42, no. 17, p. 5581 - 5594$$n17$$p5581 - 5594$$tHuman brain mapping$$v42$$x1065-9471$$y2021
000904379 8564_ $$uhttps://juser.fz-juelich.de/record/904379/files/Human%20Brain%20Mapping%20-%202021%20-%20Chen%20-%20Feedback%20from%20lateral%20occipital%20cortex%20to%20V1%20V2%20triggers%20object%20completion%20Evidence.pdf$$yOpenAccess
000904379 909CO $$ooai:juser.fz-juelich.de:904379$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b1$$kFZJ
000904379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b3$$kFZJ
000904379 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904379 9141_ $$y2021
000904379 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904379 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2019$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000904379 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904379 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000904379 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904379 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904379 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000904379 9801_ $$aFullTexts
000904379 980__ $$ajournal
000904379 980__ $$aVDB
000904379 980__ $$aUNRESTRICTED
000904379 980__ $$aI:(DE-Juel1)INM-3-20090406