000904380 001__ 904380
000904380 005__ 20220224125158.0
000904380 0247_ $$2doi$$a10.1016/j.jpsychires.2021.04.040
000904380 0247_ $$2ISSN$$a0022-3956
000904380 0247_ $$2ISSN$$a1879-1379
000904380 0247_ $$2Handle$$a2128/30412
000904380 0247_ $$2altmetric$$aaltmetric:105213936
000904380 0247_ $$2pmid$$apmid:33992982
000904380 0247_ $$2WOS$$aWOS:000658540400015
000904380 037__ $$aFZJ-2021-05950
000904380 082__ $$a610
000904380 1001_ $$0P:(DE-HGF)0$$aHaidl, Theresa Katharina$$b0$$eCorresponding author
000904380 245__ $$aIs there a diagnosis-specific influence of childhood trauma on later educational attainment? A machine learning analysis in a large help-seeking sample
000904380 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000904380 3367_ $$2DRIVER$$aarticle
000904380 3367_ $$2DataCite$$aOutput Types/Journal article
000904380 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642769772_21910
000904380 3367_ $$2BibTeX$$aARTICLE
000904380 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904380 3367_ $$00$$2EndNote$$aJournal Article
000904380 520__ $$aAbstractBackground: Childhood adversities and trauma (CAT) are associated with poor functional outcome.However, the influence of the single CAT aspects on the risk of a poor functional outcome withindifferent mental disorders has not been investigated so far. Our aims were (i)to predict individualfunctional outcome based on CAT (ii)to examine whether the prediction power differs within differentdiagnostic groups (clinical high-risk for psychosis (CHR), psychosis, affective disorders, anxiety disorders)(iii)to compare the specific patterns of CAT experiences, influencing functional outcomes in thesegroups.Method: Clinical data of 707 patients (mean age:25.09 years (SD=5.6), 65.5% male) of the Cologne EarlyRecognition and Intervention Center were assessed with the Trauma And Distress Scale. Functionaloutcome was estimated by the Social and Occupational Functioning Assessment Scale and schooleducational attainment. Using machine learning, we generated individualized models to predictfunctional outcome and to identify specific CAT patterns.Results: Across the entire sample, the best prediction for the functional outcome achieved a balancedaccuracy (BAC) of 0.6. After splitting into the single diagnostic groups, an improvement with best resultsin the psychosis group (BAC=0.70) was observed. Considering specific CAT patterns, the most predictiveitems depicted a positive and caring environment – or the absence of these, a positive self-image andexperiences of bullying.Conclusions: Our results indicated that CAT was differentially associated with functional outcome in thevarious mental disorders. Thus, the importance of mediating variables, that might explain theinterindividual differences in the vulnerability to CAT, like resilience factors, appeared to be crucial.
000904380 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904380 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904380 7001_ $$0P:(DE-HGF)0$$aGruen, Michael$$b1
000904380 7001_ $$00000-0001-7934-8082$$aDizinger, Julian$$b2
000904380 7001_ $$0P:(DE-HGF)0$$aRosen, Marlene$$b3
000904380 7001_ $$0P:(DE-HGF)0$$aDoll, Carolin Martha$$b4
000904380 7001_ $$00000-0003-1624-386X$$aPenzel, Nora$$b5
000904380 7001_ $$00000-0002-4171-673X$$aDaum, Lukas$$b6
000904380 7001_ $$0P:(DE-HGF)0$$aGroße Hokamp, Nils$$b7
000904380 7001_ $$0P:(DE-HGF)0$$aKlosterkötter, Joachim$$b8
000904380 7001_ $$0P:(DE-HGF)0$$aRuhrmann, Stephan$$b9
000904380 7001_ $$0P:(DE-Juel1)176404$$aVogeley, Kai$$b10$$ufzj
000904380 7001_ $$00000-0003-1956-9574$$aSchultze-Lutter, Frauke$$b11
000904380 7001_ $$0P:(DE-Juel1)188257$$aKambeitz, Joseph$$b12
000904380 773__ $$0PERI:(DE-600)1500641-4$$a10.1016/j.jpsychires.2021.04.040$$gVol. 138, p. 591 - 597$$p591 - 597$$tJournal of psychiatric research$$v138$$x0022-3956$$y2021
000904380 8564_ $$uhttps://juser.fz-juelich.de/record/904380/files/Haidl_2021_Childhood_Trauma_J%20Psychiatr%20Res_postprint.pdf$$yPublished on 2021-04-30. Available in OpenAccess from 2022-04-30.
000904380 909CO $$ooai:juser.fz-juelich.de:904380$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176404$$aForschungszentrum Jülich$$b10$$kFZJ
000904380 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904380 9141_ $$y2021
000904380 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904380 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904380 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904380 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PSYCHIATR RES : 2019$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-27
000904380 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904380 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904380 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000904380 9801_ $$aFullTexts
000904380 980__ $$ajournal
000904380 980__ $$aVDB
000904380 980__ $$aUNRESTRICTED
000904380 980__ $$aI:(DE-Juel1)INM-3-20090406