000904387 001__ 904387
000904387 005__ 20220131120424.0
000904387 0247_ $$2doi$$a10.1038/s41597-021-01042-2
000904387 0247_ $$2ISSN$$a2052-4436
000904387 0247_ $$2ISSN$$a2052-4463
000904387 0247_ $$2Handle$$a2128/29994
000904387 0247_ $$2altmetric$$aaltmetric:115272323
000904387 0247_ $$2pmid$$apmid:34654823
000904387 0247_ $$2WOS$$aWOS:000707577100001
000904387 037__ $$aFZJ-2021-05957
000904387 082__ $$a500
000904387 1001_ $$00000-0001-7222-7181$$aJamadar, Sharna D.$$b0$$eCorresponding author
000904387 245__ $$aTask-evoked simultaneous FDG-PET and fMRI data for measurement of neural metabolism in the human visual cortex
000904387 260__ $$aLondon$$bNature Publ. Group$$c2021
000904387 3367_ $$2DRIVER$$aarticle
000904387 3367_ $$2DataCite$$aOutput Types/Journal article
000904387 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641564200_18820
000904387 3367_ $$2BibTeX$$aARTICLE
000904387 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904387 3367_ $$00$$2EndNote$$aJournal Article
000904387 520__ $$aUnderstanding how the living human brain functions requires sophisticated in vivo neuroimaging technologies to characterise the complexity of neuroanatomy, neural function, and brain metabolism. Fluorodeoxyglucose positron emission tomography (FDG-PET) studies of human brain function have historically been limited in their capacity to measure dynamic neural activity. Simultaneous [18 F]-FDG-PET and functional magnetic resonance imaging (fMRI) with FDG infusion protocols enable examination of dynamic changes in cerebral glucose metabolism simultaneously with dynamic changes in blood oxygenation. The Monash vis-fPET-fMRI dataset is a simultaneously acquired FDG-fPET/BOLD-fMRI dataset acquired from n = 10 healthy adults (18–49 yrs) whilst they viewed a flickering checkerboard task. The dataset contains both raw (unprocessed) images and source data organized according to the BIDS specification. The source data includes PET listmode, normalization, sinogram and physiology data. Here, the technical feasibility of using opensource frameworks to reconstruct the PET listmode data is demonstrated. The dataset has significant re-use value for the development of new processing pipelines, signal optimisation methods, and to formulate new hypotheses concerning the relationship between neuronal glucose uptake and cerebral haemodynamics.
000904387 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904387 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904387 7001_ $$0P:(DE-HGF)0$$aZhong, Shenjun$$b1
000904387 7001_ $$0P:(DE-HGF)0$$aCarey, Alexandra$$b2
000904387 7001_ $$00000-0002-5613-0221$$aMcIntyre, Richard$$b3
000904387 7001_ $$0P:(DE-HGF)0$$aWard, Phillip G. D.$$b4
000904387 7001_ $$00000-0003-0866-3477$$aFornito, Alex$$b5
000904387 7001_ $$0P:(DE-HGF)0$$aPremaratne, Malin$$b6
000904387 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7
000904387 7001_ $$0P:(DE-HGF)0$$aO’Brien, Kieran$$b8
000904387 7001_ $$0P:(DE-HGF)0$$aStäb, Daniel$$b9
000904387 7001_ $$00000-0002-0173-6090$$aChen, Zhaolin$$b10
000904387 7001_ $$0P:(DE-HGF)0$$aEgan, Gary F.$$b11
000904387 773__ $$0PERI:(DE-600)2775191-0$$a10.1038/s41597-021-01042-2$$gVol. 8, no. 1, p. 267$$n1$$p267$$tScientific data$$v8$$x2052-4436$$y2021
000904387 8564_ $$uhttps://juser.fz-juelich.de/record/904387/files/s41597-021-01042-2.pdf$$yOpenAccess
000904387 909CO $$ooai:juser.fz-juelich.de:904387$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000904387 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904387 9141_ $$y2021
000904387 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000904387 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904387 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI DATA : 2019$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904387 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI DATA : 2019$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000904387 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000904387 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000904387 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000904387 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000904387 9801_ $$aFullTexts
000904387 980__ $$ajournal
000904387 980__ $$aVDB
000904387 980__ $$aUNRESTRICTED
000904387 980__ $$aI:(DE-Juel1)INM-4-20090406
000904387 980__ $$aI:(DE-Juel1)INM-11-20170113
000904387 980__ $$aI:(DE-Juel1)VDB1046