001     904387
005     20220131120424.0
024 7 _ |a 10.1038/s41597-021-01042-2
|2 doi
024 7 _ |a 2052-4436
|2 ISSN
024 7 _ |a 2052-4463
|2 ISSN
024 7 _ |a 2128/29994
|2 Handle
024 7 _ |a altmetric:115272323
|2 altmetric
024 7 _ |a pmid:34654823
|2 pmid
024 7 _ |a WOS:000707577100001
|2 WOS
037 _ _ |a FZJ-2021-05957
082 _ _ |a 500
100 1 _ |a Jamadar, Sharna D.
|0 0000-0001-7222-7181
|b 0
|e Corresponding author
245 _ _ |a Task-evoked simultaneous FDG-PET and fMRI data for measurement of neural metabolism in the human visual cortex
260 _ _ |a London
|c 2021
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641564200_18820
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding how the living human brain functions requires sophisticated in vivo neuroimaging technologies to characterise the complexity of neuroanatomy, neural function, and brain metabolism. Fluorodeoxyglucose positron emission tomography (FDG-PET) studies of human brain function have historically been limited in their capacity to measure dynamic neural activity. Simultaneous [18 F]-FDG-PET and functional magnetic resonance imaging (fMRI) with FDG infusion protocols enable examination of dynamic changes in cerebral glucose metabolism simultaneously with dynamic changes in blood oxygenation. The Monash vis-fPET-fMRI dataset is a simultaneously acquired FDG-fPET/BOLD-fMRI dataset acquired from n = 10 healthy adults (18–49 yrs) whilst they viewed a flickering checkerboard task. The dataset contains both raw (unprocessed) images and source data organized according to the BIDS specification. The source data includes PET listmode, normalization, sinogram and physiology data. Here, the technical feasibility of using opensource frameworks to reconstruct the PET listmode data is demonstrated. The dataset has significant re-use value for the development of new processing pipelines, signal optimisation methods, and to formulate new hypotheses concerning the relationship between neuronal glucose uptake and cerebral haemodynamics.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhong, Shenjun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Carey, Alexandra
|0 P:(DE-HGF)0
|b 2
700 1 _ |a McIntyre, Richard
|0 0000-0002-5613-0221
|b 3
700 1 _ |a Ward, Phillip G. D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fornito, Alex
|0 0000-0003-0866-3477
|b 5
700 1 _ |a Premaratne, Malin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 7
700 1 _ |a O’Brien, Kieran
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Stäb, Daniel
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Chen, Zhaolin
|0 0000-0002-0173-6090
|b 10
700 1 _ |a Egan, Gary F.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1038/s41597-021-01042-2
|g Vol. 8, no. 1, p. 267
|0 PERI:(DE-600)2775191-0
|n 1
|p 267
|t Scientific data
|v 8
|y 2021
|x 2052-4436
856 4 _ |u https://juser.fz-juelich.de/record/904387/files/s41597-021-01042-2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904387
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI DATA : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI DATA : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21