000904389 001__ 904389
000904389 005__ 20221117180430.0
000904389 0247_ $$2doi$$a10.7554/eLife.68980
000904389 0247_ $$2Handle$$a2128/29995
000904389 0247_ $$2altmetric$$aaltmetric:112659062
000904389 0247_ $$2pmid$$apmid:34463612
000904389 0247_ $$2WOS$$aWOS:000700424200001
000904389 037__ $$aFZJ-2021-05959
000904389 082__ $$a600
000904389 1001_ $$00000-0001-9169-0243$$aSobczak, Filip$$b0
000904389 245__ $$aDecoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation
000904389 260__ $$aCambridge$$beLife Sciences Publications$$c2021
000904389 3367_ $$2DRIVER$$aarticle
000904389 3367_ $$2DataCite$$aOutput Types/Journal article
000904389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641564715_18961
000904389 3367_ $$2BibTeX$$aARTICLE
000904389 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904389 3367_ $$00$$2EndNote$$aJournal Article
000904389 520__ $$aPupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting-state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes; however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal component analysis (PCA) and characterized the cluster-specific pupil–fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil–fMRI relationship.
000904389 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904389 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904389 7001_ $$0P:(DE-Juel1)177936$$aPais-Roldán, Patricia$$b1
000904389 7001_ $$00000-0002-3532-1512$$aTakahashi, Kengo$$b2
000904389 7001_ $$00000-0001-9890-5489$$aYu, Xin$$b3$$eCorresponding author
000904389 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.68980$$gVol. 10, p. e68980$$pe68980$$teLife$$v10$$x2050-084X$$y2021
000904389 8564_ $$uhttps://juser.fz-juelich.de/record/904389/files/elife-68980-v2.pdf$$yOpenAccess
000904389 909CO $$ooai:juser.fz-juelich.de:904389$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177936$$aForschungszentrum Jülich$$b1$$kFZJ
000904389 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904389 9141_ $$y2021
000904389 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2019$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000904389 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904389 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904389 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2019$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000904389 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000904389 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000904389 9801_ $$aFullTexts
000904389 980__ $$ajournal
000904389 980__ $$aVDB
000904389 980__ $$aUNRESTRICTED
000904389 980__ $$aI:(DE-Juel1)INM-4-20090406