001     904401
005     20220131120425.0
024 7 _ |a 10.1016/j.neuroimage.2021.118533
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 2128/29952
|2 Handle
024 7 _ |a altmetric:112593452
|2 altmetric
024 7 _ |a pmid:34469814
|2 pmid
024 7 _ |a WOS:000697098400004
|2 WOS
037 _ _ |a FZJ-2021-05971
082 _ _ |a 610
100 1 _ |a Bijsterbosch, Janine D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Recent developments in representations of the connectome
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641469300_24280
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Research into the human connectome (i.e., all connections in the human brain) with the use of resting state functional MRI has rapidly increased in popularity in recent years, especially with the growing availability of large-scale neuroimaging datasets. The goal of this review article is to describe innovations in functional connectome representations that have come about in the past 8 years, since the 2013 NeuroImage special issue on ‘Mapping the Connectome’. In the period, research has shifted from group-level brain parcellations towards the characterization of the individualized connectome and of relationships between individual connectomic differences and behavioral/clinical variation. Achieving subject-specific accuracy in parcel boundaries while retaining cross-subject correspondence is challenging, and a variety of different approaches are being developed to meet this challenge, including improved alignment, improved noise reduction, and robust group-to-subject mapping approaches. Beyond the interest in the individualized connectome, new representations of the data are being studied to complement the traditional parcellated connectome representation (i.e., pairwise connections between distinct brain regions), such as methods that capture overlapping and smoothly varying patterns of connectivity (‘gradients’). These different connectome representations offer complimentary insights into the inherent functional organization of the brain, but challenges for functional connectome research remain. Interpretability will be improved by future research towards gaining insights into the neural mechanisms underlying connectome observations obtained from functional MRI. Validation studies comparing different connectome representations are also needed to build consensus and confidence to proceed with clinical trials that may produce meaningful clinical translation of connectome insights.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Valk, Sofie L.
|0 P:(DE-Juel1)173843
|b 1
700 1 _ |a Wang, Danhong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Glasser, Matthew F.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.neuroimage.2021.118533
|g Vol. 243, p. 118533 -
|0 PERI:(DE-600)1471418-8
|p 118533 -
|t NeuroImage
|v 243
|y 2021
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/904401/files/1-s2.0-S1053811921008065-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904401
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21