000904403 001__ 904403
000904403 005__ 20230123110547.0
000904403 0247_ $$2doi$$a10.1007/s00429-021-02382-w
000904403 0247_ $$2ISSN$$a0044-2232
000904403 0247_ $$2ISSN$$a0340-2061
000904403 0247_ $$2ISSN$$a1432-0568
000904403 0247_ $$2ISSN$$a1863-2653
000904403 0247_ $$2ISSN$$a1863-2661
000904403 0247_ $$2Handle$$a2128/30726
000904403 0247_ $$2altmetric$$aaltmetric:116196647
000904403 0247_ $$2pmid$$apmid:34731328
000904403 0247_ $$2WOS$$aWOS:000714324700002
000904403 037__ $$aFZJ-2021-05973
000904403 082__ $$a610
000904403 1001_ $$00000-0003-0493-0283$$aForkel, Stephanie J.$$b0$$eCorresponding author
000904403 245__ $$aWhite matter variability, cognition, and disorders: a systematic review
000904403 260__ $$aHeidelberg$$bSpringer$$c2022
000904403 3367_ $$2DRIVER$$aarticle
000904403 3367_ $$2DataCite$$aOutput Types/Journal article
000904403 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645102158_26757
000904403 3367_ $$2BibTeX$$aARTICLE
000904403 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904403 3367_ $$00$$2EndNote$$aJournal Article
000904403 520__ $$aInter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.
000904403 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904403 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904403 7001_ $$0P:(DE-Juel1)185938$$aFriedrich, Patrick$$b1
000904403 7001_ $$0P:(DE-HGF)0$$aThiebaut de Schotten, Michel$$b2
000904403 7001_ $$aHowells, Henrietta$$b3
000904403 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-021-02382-w$$p529–544$$tBrain structure & function$$v227$$x0044-2232$$y2022
000904403 8564_ $$uhttps://juser.fz-juelich.de/record/904403/files/Forkel2022_Article_WhiteMatterVariabilityCognitio.pdf$$yOpenAccess
000904403 909CO $$ooai:juser.fz-juelich.de:904403$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904403 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185938$$aForschungszentrum Jülich$$b1$$kFZJ
000904403 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904403 9141_ $$y2022
000904403 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000904403 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904403 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000904403 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904403 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904403 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904403 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2021$$d2022-11-17
000904403 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000904403 920__ $$lyes
000904403 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000904403 980__ $$ajournal
000904403 980__ $$aVDB
000904403 980__ $$aUNRESTRICTED
000904403 980__ $$aI:(DE-Juel1)INM-7-20090406
000904403 9801_ $$aFullTexts