| Home > Publications database > The effects of multi-echo fMRI combination and rapid T*-mapping on offline and real-time BOLD sensitivity > print |
| 001 | 904407 | ||
| 005 | 20220131120426.0 | ||
| 024 | 7 | _ | |a 10.1016/j.neuroimage.2021.118244 |2 doi |
| 024 | 7 | _ | |a 1053-8119 |2 ISSN |
| 024 | 7 | _ | |a 1095-9572 |2 ISSN |
| 024 | 7 | _ | |a 2128/29949 |2 Handle |
| 024 | 7 | _ | |a altmetric:107471313 |2 altmetric |
| 024 | 7 | _ | |a pmid:34116148 |2 pmid |
| 024 | 7 | _ | |a WOS:000679333800006 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-05977 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Heunis, Stephan |0 P:(DE-Juel1)187419 |b 0 |e Corresponding author |
| 245 | _ | _ | |a The effects of multi-echo fMRI combination and rapid T*-mapping on offline and real-time BOLD sensitivity |
| 260 | _ | _ | |a Orlando, Fla. |c 2021 |b Academic Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1641469035_20205 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a A variety of strategies are used to combine multi-echo functional magnetic resonance imaging (fMRI) data, yet recent literature lacks a systematic comparison of the available options. Here we compare six different approaches derived from multi-echo data and evaluate their influences on BOLD sensitivity for offline and in particular real-time use cases: a single-echo time series (based on Echo 2), the real-time T2*-mapped time series (T2*FIT) and four combined time series (T2*-weighted, tSNR-weighted, TE-weighted, and a new combination scheme termed T2*FIT-weighted). We compare the influences of these six multi-echo derived time series on BOLD sensitivity using a healthy participant dataset (N = 28) with four task-based fMRI runs and two resting state runs. We show that the T2*FIT-weighted combination yields the largest increase in temporal signal-to-noise ratio across task and resting state runs. We demonstrate additionally for all tasks that the T2*FIT time series consistently yields the largest offline effect size measures and real-time region-of-interest based functional contrasts and temporal contrast-to-noise ratios. These improvements show the promising utility of multi-echo fMRI for studies employing real-time paradigms, while further work is advised to mitigate the decreased tSNR of the T2*FIT time series. We recommend the use and continued exploration of T2*FIT for offline task-based and real-time region-based fMRI analysis. Supporting information includes: a data repository (https://dataverse.nl/dataverse/rt-me-fmri), an interactive web-based application to explore the data (https://rt-me-fmri.herokuapp.com/), and further materials and code for reproducibility (https://github.com/jsheunis/rt-me-fMRI). |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Breeuwer, Marcel |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Caballero-Gaudes, César |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Hellrung, Lydia |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Huijbers, Willem |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Jansen, Jacobus FA |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Lamerichs, Rolf |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Zinger, Svitlana |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Aldenkamp, Albert P |0 P:(DE-HGF)0 |b 8 |
| 773 | _ | _ | |a 10.1016/j.neuroimage.2021.118244 |g Vol. 238, p. 118244 - |0 PERI:(DE-600)1471418-8 |p 118244 - |t NeuroImage |v 238 |y 2021 |x 1053-8119 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904407/files/1-s2.0-S1053811921005218-main.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:904407 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187419 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROIMAGE : 2019 |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-29 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-29 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROIMAGE : 2019 |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-29 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|