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ARTICLE INFO ABSTRACT

Keywords: A variety of strategies are used to combine multi-echo functional magnetic resonance imaging (fMRI) data, yet
Real-time recent literature lacks a systematic comparison of the available options. Here we compare six different approaches
Multi-echo

derived from multi-echo data and evaluate their influences on BOLD sensitivity for offline and in particular real-
time use cases: a single-echo time series (based on Echo 2), the real-time T,*-mapped time series (T,*FIT) and
four combined time series (T,*-weighted, tSNR-weighted, TE-weighted, and a new combination scheme termed
T,*FIT-weighted). We compare the influences of these six multi-echo derived time series on BOLD sensitivity using
a healthy participant dataset (N = 28) with four task-based fMRI runs and two resting state runs. We show that the

Functional magnetic resonance imaging
Neurofeedback

Adaptive paradigms

Methods development

Finger tapping

Motor T,*FIT-weighted combination yields the largest increase in temporal signal-to-noise ratio across task and resting
Emotion processing state runs. We demonstrate additionally for all tasks that the T,*FIT time series consistently yields the largest
Amygdala offline effect size measures and real-time region-of-interest based functional contrasts and temporal contrast-to-
Task

Resting state

noise ratios. These improvements show the promising utility of multi-echo fMRI for studies employing real-time
paradigms, while further work is advised to mitigate the decreased tSNR of the T,*FIT time series. We recommend
the use and continued exploration of T,*FIT for offline task-based and real-time region-based fMRI analysis.
Supporting information includes: a data repository (https://dataverse.nl/dataverse/rt-me-fmri), an interactive
web-based application to explore the data (https://rt-me-fmri.herokuapp.com/), and further materials and code
for reproducibility (https://github.com/jsheunis/rt-me-fMRI).

1. Introduction

of variance. Improved sensitivity is particularly important for real-time
use cases, such as adaptive experimental paradigms, real-time quality

In functional magnetic resonance imaging (fMRI), T,*-weighted MRI
sequences use the blood oxygen level-dependant (BOLD) signal as a
proxy for neuronal activity. Our ability to infer accurate information
about neuronal processes is influenced by the sensitivity with which we
can capture these BOLD changes and subsequently delineate its sources
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control, or fMRI neurofeedback, where BOLD changes are quantified
and used as they are acquired without the benefit of a full dataset or
the requisite amount of post-processing time. It is well known that op-
timum sensitivity of single-echo fMRI is achieved at an echo time (TE)
close to the apparent tissue T,*-value at baseline (Menon et al., 1993),
which also underlies an inherent drawback of T,*-weighted sequences.
Location-specific BOLD sensitivity is suboptimal since T,* varies across
tissue types and brain regions (Peters et al., 2007), which can result in
spatial variability in the detection of task-related activation patterns.
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Furthermore, magnetic susceptibility gradients on a macroscopic level
result in image defects such as signal dropout and distortion, which is
pronounced in the ventromedial prefrontal, orbitofrontal, the medial
temporal and the inferior temporal lobes (Devlin et al., 2000). Addi-
tionally, the complex interplay of blood flow, blood volume and mag-
netic susceptibility effects can be influenced strongly by system- and
participant-level noise sources, thus confounding the BOLD signal.

An advancement that has shown promise in making inroads into
these drawbacks is multi-echo fMRI. Several studies have shown ben-
efits of offline denoising based on multi-echo independent compo-
nent analysis (MEICA; Kundu et al., 2012) for both resting state (e.g.
Olafsson et al., 2015; Dipasquale et al., 2017) and task-based fMRI data
(e.g., Lombardo et al., 2016; Gonzalez-Castillo et al., 2016; Moia et al.,
2020). Echo combination via weighted summation is a critical step in
multi-echo post-processing that has been reported to increase temporal
signal-to-noise ratio, decrease signal drop-out, and improve activation
extent for task-analysis (Poser et al., 2006). Posse et al. (1999) proposed
several echo combination schemes, including simple echo summation
(i.e. equal weights) and weighting echoes by their relative expected
BOLD contrast contribution (i.e. T,*), which would require a numer-
ical or fitted estimation of T,*. Other possible weighting schemes in-
clude optimised scalar weights, TE-weighted combination, and tSNR-
weighted combination (also termed the PAID method) proposed by
Poser et al. (2006). A theoretical framework for optimizing multi-echo
combination has also been proposed by Gowland and Bowtell (2007).
However, the relative benefits of all available combination schemes re-
main unclear.

With access to multiple data samples along the decay curve, multi-
echo allows quantification of the effective transverse relaxation param-
eter T,* (decay time) or R,* (its inverse, decay rate), and S, (initial
net magnetization). This form of quantitative T,*-mapping (such as de-
scribed by Weiskopf et al., 2013) acquires multiple closely spaced echoes
followed by a data fitting procedure that yields a static, baseline T,*-
map. In the context of functional imaging, however, temporal or per-
volume T,*-mapping is also feasible, with the core benefit being the
separation and quantification of T,* and S, changes (from baseline)
during stimulated neuronal activation. Such real-time use cases of multi-
echo data have been reported, starting with Posse et al.’s (1998) single-
shot, multi-echo spectroscopic imaging sequence that quantified region-
specific T,* changes during olfactory and visual tasks, and which re-
ported a larger functional contrast (up to 20% increase in the visual
cortex) compared to standard EPI data. Several developments followed,
including measuring single-event related brain activity (Posse et al.,
2001), whole brain T,*-mapping at 1.5T using a linear combination of
echoes (Hagberg et al., 2002), later with added gradient compensation
(Posse et al., 2003), and a multi-echo EPI sequence at 3T with real-
time distortion correction (Weiskopf et al., 2005). Rapid T,*-mapping
has also been a useful tool in studying the interplay between cere-
bral blood flow, blood volume and blood oxygenation, particularly in
combination with contrast agents (see, for example: Scheffler et al.,
1999; Schulte et al., 2001; Pears et al., 2003). In real-time fMRI neu-
rofeedback, some examples of multi-echo use are reported specifically
for improving signal gains in regions such as the amygdala, includ-
ing Posse et al. (2003) which uses T,*-weighted echo summation and
Marxen et al. (2016), which uses scalar TE-dependant weights pre-
selected to yield an average T,*-value of 30 ms in the amygdala.

Although methodological studies have reported the benefits of multi-
echo fMRI combination, a comprehensive evaluation of its practical ben-
efits is lacking. Specifically, a variety of combination methods exist that
can lead to both offline and real-time improvements in BOLD sensitiv-
ity, but there has been no systematic comparison between such methods.
Additionally, per-volume T,*-mapping forms a necessary step in estab-
lished multi-echo-based methods, but recent literature has not explored
its value for task fMRI analysis. Consequently, this study has two main
goals: (1) to explore the differences in BOLD sensitivity, both offline
and per-volume, between time series of standard single echo EPI, per-
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Fig. 1. Arepresentation of mono-exponential signal decay showing dimin-
ishing image intensity along three echoes. The second echo is sampled at
the optimum echo time equal to average grey matter T,*, standard for single
echo fMRI. The equation for the red, mono-exponential decay curve is provided

(Eq. (1)).
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volume estimated T,*FIT, and multi-echo-combined time series (includ-
ing tSNR-weighted, T,*, TE-weighted, and T,*FIT-weighted); and (2) to
explore the T,*FIT time series as an alternative to single-echo or multi-
echo-combined time series for offline and real-time fMRI analysis. We
investigate these aims for whole brain data in separate task paradigms,
eliciting responses to motor and emotion processing tasks and mental
versions thereof, and during resting state. To quantify differences, we
employ several metrics such as tSNR, task activity effect size, region-
of-interest based temporal percentage signal change (tPSC), functional
contrast, and temporal contrast-to-noise ratio (tCNR).

2. Multi-echo fMRI relaxation and combination

Multi-echo fMRI sequences acquire a slice or multiple slices of a
functional image at discrete echo times (TE) after a single transverse
excitation pulse of the scanner. All slices of a whole brain image are ac-
quired within the standard repetition time (TR) which then yields mul-
tiple echoes per volume. The relaxation of the fMRI signal in a given
voxel after transverse excitation, assuming a mono-exponential decay
model, is given as:

YL

St =8y-e7 +e=S8,-e "R te (1

with S(t) being the time-decaying fMRI signal, S, being the tissue mag-
netization directly after transverse excitation, and T,* being the local
tissue transverse relaxation (i.e. decay time) constant (the inverse of the
decay rate, R,*). Per-voxel estimates of S, and T,* (depicted below in
Fig. 1) can be derived using a log-linear regression estimation and the
available echo times (t; to t,, where pinv is the pseudo-inverse log the
natural logarithm):

1-1 log(S(tl))

l—:tz N log(é"(tz)) @

= prinv

[log (SO)]
R} : :
1-1, log (S(t,,))

The mathematics of all widely used multi-echo combination schemes
are based on the underlying concepts of data weighting, summation and
averaging. In the supplementary online material, we provide a thor-
ough background of these concepts along with explanatory equations
S1 through S6. Importantly, the multi-echo combination schemes pre-
sented below use the convention of weighted summation with normal-
ized weights. This implies that (1) all weights are normalized such that
their sum equals 1, then (2) each normalized weight is multiplied by
its corresponding data point, then (3) these products are summed to
produce the weighted summation.
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Simple echo summation
Simple echo summation assumes equal weights for all echoes (to-
talling N), which is calculated for an individual echo n as:

1
SUM
tSNR-weighted combination
The PAID method put forward by Poser et al. (2006) uses the voxel-
based tSNR measured at each echo (tSNR,,) as the weights:
tSNR,-TE,

wSNR = - @)
SN iSN R, -TE,

TE-weighted combination

Purely using each echo’s echo time, TE,, as the weight for that echo
has also been suggested (Posse et al., 1999). In this case, the same scalar
value is used as the weighting factor for all voxels of a specific echo: iom

TE
it = ®
2o TE

Similarly, a range of scalar values can be used as echo-dependant
weighting factors, usually optimised according to study-specific crite-
ria. For example, Marxen et al. (2016) selected scalar weights in order
to yield an average T,* value of 30 ms in their region of interest (the
amygdala). In such a case, the predefined scalar weights {SW;, SW,, . .
., SWy} can be normalized as:

SW SW,

wsW = 2T ©6)
N SW,

T,*-weighted combination

The T,*-weighted combination scheme used by
Posse et al. (1999) and termed ‘'"optimal combination" by
Kundu et al. (2012), calculates the individual echo weights w,
per voxel as:

W TE, -exp (-TE,/T;)
" XN TE, exp(-TE/T})

Q)

T,*FIT-weighted combination

Finally, as proposed in the introduction, real-time T,*-mapping is
made possible when using multi-echo fMRI. Here, the per-volume esti-
mation of T,* at each voxel, termed T,*FIT(t) (to our knowledge first
defined by Power et al., 2018), can also be used as the weighting factor
in a per-volume echo combination scheme:

TE,-exp (-TE, /T, FIT())

T FIT
w 2 = N
YL\ TE; -exp (—-TE;/T;FIT())

n

®

The per-volume nature of this echo combination scheme makes it
ideal for use in both offline and real-time applications, when an a priori
T,*-map (like the one used in Eq. (7)) is not available or not preferred.
To the best of our knowledge, this T,*FIT-weighted combination ap-
proach has not been described previously in the literature

In the methods and results presented in this work, we compare
metrics derived from standard single echo fMRI analysis to metrics
derived from analysing T,*-weighted, tSNR-weighted, TE-weighted,
T,*FIT-weighted, and the T,*FIT parameter time series, in both offline
and per-volume scenarios.

3. Methods

In-depth descriptions of the participant details, ethics approval, ex-
perimental design, MRI protocol, preprocessing, and data quality can be
accessed in the related data article (Heunis et al., 2020a). Summarising
statements are provided below for the sake of completeness.
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3.1. Participants

MRI and physiology data were collected from N = 28 participants
(male=20; female==8; age = 24.9 + 4.6 mean + standard deviation). The
study was approved by the local ethics review board and all participants
gave written consent for their data to be collected, processed and shared
in accordance with a GDPR-compliant procedure.

3.2. Experimental design

A total of seven MRI acquisitions were collected during a single scan-
ning session per participant. These acquisitions include, in order of ac-
quisition:

1 A T1-weighted anatomical scan

2 rest run-1: the first resting state run, eyes fixated on a white cross

3 fingerTapping: a right hand finger tapping functional task

4 emotionProcessing: a matching-shapes-and-faces functional task

5 rest run-2: the second resting state run, eyes fixated on a white cross

6 fingerTappinglmagined: an imagined finger tapping functional task

7 emotionProcessinglmagined: a functional task to recall an emotional
memory

All four task paradigms followed an ON/OFF boxcar design, starting
with the OFF condition, with both conditions lasting 10 vol (= 20 s at
TR = 2 s). The control (i.e. OFF) condition for the fingerTapping task was
to focus on a small white cross on a black screen; for the emotionPro-
cessing task the control condition was the shape-matching block; and for
the fingerTappinglmagined and emotionProcessinglmagined tasks the con-
trol conditions were counting backwards, respectively, in multitudes of
7 and 9.

3.3. MRI protocol

MRI data were acquired on a 3 Tesla Philips Achieva scanner (soft-
ware version 5.1.7) and using a Philips 32-channel head coil. A sin-
gle T1-weighted anatomical image was acquired using a 3D gradi-
ent echo sequence (T1 TFE) with scanning parameters: TR = 8.2 ms;
TE = 3.75 ms; flip angle = 8; field of view = 240 x 240 x 180 mm;
resolution = 1 X 1 x 1 mm; total scan time = 6:02 min.

All six functional MRI scans were acquired using a multi-echo, echo-
planar imaging sequence with scanning parameters: TR = 2000 ms;
TE = 14,28,42 ms (3 echoes); number of volumes = 210 (ex-
cluding 5 dummy volumes discarded by the scanner); total scan
time = 7:00 min (excluding 5 dummy volumes); flip angle = 90°; field
of view = 224 x 224 x 119 mm; resolution = 3.5 x 3.5 x 3.5 mm;
in-plane matrix size = 64 x 64; number of slices = 34; slice thick-
ness = 3.5 mm; interslice gap = 0 mm; slice orientation = oblique;
slice order/direction = sequential/ascending; phase-encoding direc-
tion = A/P; SENSE acceleration factor = 2.5. Parts of the cerebellum and
brainstem were excluded for some participants to ensure full coverage
of the cortex and subcortical areas of interest. Echo times, spatial resolu-
tion, and the SENSE factor were tuned with the aim of improving spatial
resolution and coverage while limiting the TR to maximum 2000 ms,
including a maximum number of echoes, and keeping the SENSE factor
low to prevent SENSE artefacts.

In addition, cardiac and respiratory fluctuations were recorded dur-
ing the functional scans, respectively using a pulse oximeter fixed to
the participant’s left index finger, and a pressure-based breathing belt
strapped around the participant’s upper abdomen. These were sampled
at 500 Hz.

3.4. Data analysis
Data analysis consists of anatomical and functional preprocessing,

definition and calculation of echo combination weights, multi-echo com-
bination, time-series processing and calculation of comparison metrics.
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All analyses are done on an individual basis (i.e. participant-specific),
unless otherwise stated, to describe the effects and facilitate the use of
these methods in real-time fMRI use cases.

All processing steps below were done using the open source
MATLAB-based and Octave-compatible fMRwhy toolbox (v0.0.1; https:
//github.com/jsheunis/fMRwhy), which has conditional dependencies:

« SPM12  (r7771; https://github.com/spm/spm12/releases/tag/
r7771; Friston et al., 2007)

* bids-matlab  (v.0.0.1, https://github.com/jsheunis/bids-matlab/
releases/tag/fv0.0.1)

» Anatomy Toolbox (v3.0; Eickhoff et al., 2005)

e dicm2nii (v0.2 from a forked repository; https://github.com/
jsheunis/dicm2nii/releases/tag/v0.2)

« TAPAS PhysIO (v3.2.0; https://github.com/
translationalneuromodeling/tapas/releases/tag/v3.2.0;
Kasper et al., 2017)

e Raincloud plots  (v1.1  https://github.com/RainCloudPlots/
RainCloudPlots/releases/tag/v1.1; Allen et al., 2019).

All data analysis scripts can be accessed for reproducibility or reuse
with attribution at https://github.com/jsheunis/rt-me-fMRI.

3.4.1. Preprocessing
The basic anatomical and functional preprocessing pipeline applied
to all data is described in detail in the data article, and included:

1 Defining a functional template from Echo 2 of the first volume of the
first resting state run. Echo 2 is selected in order to apply the same
pipeline and allow a fair comparison of multi-echo to single-echo
data, since for the latter only a single time series similar to Echo 2
would be available.

a Mapping prior data to the subject functional space, including:

b Coregistration of the anatomical image and atlas-based regions of
interest (available in MNI152 space; Eickhoff et al., 2005) to the
functional template space, and resampling these to the functional
resolution.

2 Tissue-based segmentation of the coregistered anatomical image (af-
ter coregistration but before downsampling) and subsequent defini-
tion of binary maps for grey matter, white matter, cerebrospinal fluid
(CSF) and the whole brain.

3 Basic functional preprocessing steps, including: estimating realign-
ment parameters from the Echo 2 time series, running slice timing
correction on all echo time series, applying realignment parame-
ters to all echo time series, and applying spatial smoothing (7 mm
isotropic, i.e. twice the voxel width) to all echo time series.

4 Generating data quality control metrics and visualisations to allow
inspection of the quality of anatomical and functional data and their
derivatives.

Two aspects of the preprocessing and analyses pipelines are worth
highlighting in the context of this study. Firstly, while an important fo-
cus for this work is its application and utility in real-time scenarios,
all processing was done offline, either on the full dataset or on a per-
volume (i.e. simulated real-time) basis. This was viable since the study
did not include any neurofeedback or real-time adaptive paradigms that
would have required real-time computation and interaction. Secondly,
in order to use a standardised pipeline (across multiple runs of multi-
echo and single-echo data) that can compute derivative measures that
are aligned across analyses and therefore comparable on a per-voxel ba-
sis, we followed the concept of "minimally processed" data as described
by DuPre et al. (2020). This means that minimal steps including slice
timing correction and 3D volume realignment are applied to multi-echo
data before decay parameter estimation or multi-echo combination.

3.4.2. Data quality control
The fMRwhy toolbox has a BIDS-compatible data quality pipeline
for functional and anatomical MRI, fmrwhy_bids workflowQC, that can
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be run automatically for a full BIDS-compliant dataset. After running
minimal preprocessing steps it generates a subject-specific HTML-report
with quality control metrics and visualisations to allow inspection of
the data and its derivatives. Individual reports can be accessed in the
derivatives directory of the shared BIDS-compliant dataset of this study
(see Heunis et al., 2020a for details). Additionally, a web-application
named rt-me-fMRI is provided along with this work and accessible at:
https://rt-me-fmri.herokuapp.com/. It can be used interactively to ex-
plore various summaries of data quality metrics, including distributions
of framewise displacement (FD) and tSNR, and physiology recordings,
as well as the results of this study.

None of the participant datasets were excluded after inspection of
the included quality metrics, even in cases of more than average or se-
vere motion (specifically sub-010, sub-020, and sub-021), since such
data could still be useful for data quality related insights or for future
denoising methods validation. In addition, for all participant data the
alignments of the anatomical masque, the derived tissue segmentation
masks, and the EPI data were visualised, inspected and the overlap was
found acceptable.

3.4.3. Multi-echo combination

Existing weighting parameters or parameter maps are required to
allow both offline and per-volume combination of multi-echo data. Of
the previously reported options for weighting schemes given in Section
2.2, the simplest option used in this study is the echo time (Eq. (5))
derived from the functional MRI protocol, which yields a TE-weighted
combination. Other prior weighting parameters are calculated using the
first resting state functional scan. For each minimally preprocessed echo
time series of the resting state run, the time series mean and standard
deviation are calculated. The mean divided by the standard deviation
yields the temporal signal-to-noise ratio (tSNR), per echo, that is used
as another weighting parameter (Eq. (4)) described as the PAID method
by Poser et al. (2006). Additionally, the mean images from the three
echo time series are used to derive the per-voxel estimates of S, and
T,* assuming a mono-exponential decay model and using a log-linear
regression estimation (Eq. (2)). This baseline T,* map can be used for
T,*-weighted combination (Eq. (7)), described as optimal combination
by Kundu et al. (2012). Lastly, the same log-linear regression that is
applied to the time series mean images can also be applied to a single
volume of any multi-echo data. This implies that the three echo images
of any volume can be used as data points to estimate per-volume and
per-voxel parameter maps, SoFIT(t) and T,*FIT(t), which in turn can
be used for per-volume multi-echo combination (Eq. (8)), hereinafter
referred to as T,*FIT-combination.

Multi-echo combination schemes are applied to all functional data
excluding the first resting state run, from which prior baseline weight
maps are derived. In sum, six time series are computed per functional
run (as described in Fig. 2): Echo 2, tSNR-combined, TE-combined, T,*-
combined, T,*FIT-combined, and the T,*FIT time series.

3.4.4. Time series processing

After computing the six time series per functional run (excluding
the first resting state run), each resulting time series is processed as
summarised in the bottom row of Fig. 2.

First, the tSNR of each time series is calculated prior to any further
processing. Then, each time series is spatially smoothed using a Gaus-
sian kernel with FWHM at 7 mm (i.e. double the voxel size). This is
followed by participant-level GLM-based analysis of the four task runs.
Task regressors included the main "ON" blocks for the fingerTapping, fin-
gerTappinglmagined and emotionProcessinglmagined tasks, and both the
separate "SHAPES" and "FACES" trials for the emotionProcessing task. Re-
gressors not-of-interest for all runs included six realignment parameter
time series and their derivatives, the CSF compartment time series, and
RETROICOR regressors (both cardiac and respiratory to the 2nd order,
excluding interaction regressors).
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Fig. 2. The analysis pipeline applied to the rt-me-fMRI dataset. Prior tSNR and T,* maps are derived from the first resting state run. For all other functional runs
(top row), six steps are executed per volume after minimal preprocessing in order to yield resulting multi-echo-derived time series for comparison: (1) the 2nd echo
time series is extracted without processing, (2) the prior tSNR-weighted combination, (3) the TE-weighted combination, (4) the baseline T,*-weighted combination,
(5) the T,*FIT-weighted combination, and (6) T,*FIT time series. Following this, each of the six time series then undergoes offline and simulated real-time processing
pipelines. The offline pipeline includes (in order): tSNR calculation, spatial smoothing, participant-level task analysis, calculation of percentage signal change effect
sizes, and statistical thresholding of the participant-level contrast maps. The simulated real-time pipeline is run per volume for each time series and includes (in
order): spatial smoothing, spatial averaging of the appropriate region-of-interest signals, and cumulative denoising (including detrending using linear and quadratic

regressors).
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Additional steps executed by SPM12 before beta parameter estima-
tion include high-pass filtering using a cosine basis set and AR(1) au-
toregressive filtering of the data and GLM design matrix. Contrasts are
applied to the task-related beta maps for the fingerTapping, fingerTap-
pinglmagined and emotionProcessinglmagined tasks, and to the FACES,
SHAPES, and FACES>SHAPES beta maps for the emotionProcessing task.
In order to yield a standard measure of effect size, the parameter es-
timates or contrast maps are then used to calculate percentage signal
change (PSC) using the method described by Pernet (2014) and given
by:

PCS = ﬁconditio:l * SF %100 (9)

ﬁcanstant

where B ondgition @A Peonsians ar€ parameter estimates corresponding to
the relevant GLM regressors that are scaled with regards to the actual
BOLD magnitude. To account for this, the scaling factor (SF) is deter-
mined as the maximum value of a reference trial taken at the resolution
of the super-sampled design matrix X, (where supersampling is typically
done before convolution with the hemodynamic response function):

SF = max(Triale) (10)

Statistical thresholding was applied to identify task-related regions
of activity by controlling the voxel-wise familywise error rate (FWE),
with pFWE < 0.05, and a voxel extent threshold of 0.

3.4.5. Real-time analysis

Minimally processed time series are also analysed per-volume (using
data acquired up to each volume in time) in order to explore multi-echo
related BOLD sensitivity changes for real-time applications. Real-time
analysis typically involves minimal processing (including 3D realign-
ment), spatially averaging the signal within given ROIs, and additional
per-volume denoising steps on the averaged signal. Here, we run a per-
volume denoising process adapted from OpenNFT (Koush et al., 2017)
on all task time series. This process is depicted in the bottom row of
Fig. 2 and includes, in order: 1) Spatial smoothing using a Gaussian
kernel with FWHM at 7 mm, 2) Spatial averaging of voxel signals with
defined ROIs, and 3) Cumulative GLM-based detrending of the ROI sig-
nals, including linear and quadratic trend regressors. This then yields
per-volume minimally denoised ROI-signals from which percentage sig-
nal change or another calculation can be used as the basis for the neu-
rofeedback or real-time ROI signal.

3.4.6. Comparison metrics

To explore the differences between various multi-echo combinations
and standard single echo data, and to investigate the usefulness of the
former over the latter, we employ several comparison metrics:

» Temporal signal-to-noise ratio (tSNR) calculated as the voxel-wise
time series mean divided by voxel-wise time series standard devia-
tion. tSNR is an indicator of the amount of signal available from
which to extract potentially useful BOLD fluctuations. Additionally,
tSNR maps can be a robust visual indicator of increases or decreases
in signal dropout.

Percentage signal change (PSC) of task-based contrast maps result-
ing from participant-level GLM analysis. PSC represents a standard-
ised measure of effect size (which beta or contrast values are not)
and is an indicator of the BOLD sensitivity of the data based on GLM
analysis.

T-statistic values related to the task-based contrast maps resulting
from participant-level GLM analysis.

Temporal percentage signal change (tPSC) of the single echo,
combined-echo and derived time series data of the task runs. This
is calculated per voxel on minimally processed task data as the per-
volume signal’s percentage signal change from the time series mean
(or, for real-time scenarios, from the mean of the preceding baseline
"OFF" block or the cumulative mean). These are then spatially aver-
aged within the regions listed below to yield ROI-based time series.

.
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These time courses are similar to what would be calculated in real-
time as the ROI-based neurofeedback signal, and their amplitudes
can be an indicator of BOLD sensitivity.

Functional contrast of the ROI-based tPSC signals. To calculate the
functional contrast in ROIs, the average tPSC in volumes classified as
being part of "OFF" condition blocks are subtracted from the average
signal in volumes classified as being part of each "ON" condition
block. Visually, this corresponds to the average amplitude difference
between conditions in the tPSC signal. The functional contrast is an
indicator of the BOLD sensitivity of a signal based on both minimally
processed and denoised data.

Temporal contrast-to-noise ratio (tCNR) of the single echo,
combined-echo and derived time series data of the task runs. To cal-
culate the tCNR, the functional contrast in an ROI is divided by the
time series standard deviation of the tPSC signal in the same ROL.
This is related to both the tSNR and BOLD sensitivity. Where tPSC
consists of time courses, tCNR provides a single summary value per
voxel or region.

Extracting and spatially averaging voxel time series from specific re-
gions is a common approach to exploring patterns of task-based activity
in fMRI (Poldrack, 2007). This can be done both offline on a full dataset,
and in real-time on the data as they are acquired. In this work, we ex-
plore and compare the above-mentioned metrics on both whole-brain
and region-specific levels. Regions include:

Grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
compartments. This allows quantifying, for example, whether com-
bined multi-echo data changes a given metric similarly or differently
across tissue types.

A binary map of the voxels surviving voxel-wise pFWE <0.05 statisti-
cal thresholding (FWE). These maps vary spatially per time series of
a given task run and they represent the functionally most responsive
voxels based on the underlying data but assuming shared criteria
(i.e. statistical threshold).

A binary map resulting from a logical OR of the FWE-thresholded
maps of all six time series of a given task run (FWE-OR). This allows
the comparison of metrics in a region that includes the voxels that
are judged to be significantly active in any time series, thus removing
time series-specific spatial bias.

Atlas-based anatomical regions of interest (Atlas-based ROI), de-
rived from templates in MNI152 space (Eickhoff et al., 2005) that
have been mapped to individual anatomical scans and coregistered
and resampled to the individual functional space. This allows quan-
tification of the above metrics within an a priori defined ROI, thus ex-
cluding spatial bias introduced by statistical thresholding. The Atlas-
based ROIs include the left motor cortex (for right-hand finger tap-
ping), and the bilateral amygdala (for emotion processing).

The focus of this work is on exploring, quantifying and describing
differences and on generating data that allows deriving clear hypothe-
ses for future confirmatory follow-up. While null hypothesis significance
testing is used where necessary in task-based analysis, overall differ-
ences in the above-mentioned comparison metrics are not significance
tested and are rather described in terms of means and percentage change
from a reference.

4. Results

A web-application named rt-me-fMRI is provided alongside this
work and accessible at: https://rt-me-fmri.herokuapp.com/. This
browser-based application can be used interactively to explore the sum-
mary and participant-specific results presented below, and is intended
to serve as supplementary material to this work.
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Fig. 3. Signal decay along the three echoes (top to bottom) of a single volume. Signal decay is displayed across a selection of slices (horizontal axis). Signal
dropout is clearly evident in the orbitofrontal and ventromedial prefrontal cortices and inferior and anterior temporal lobes (magenta arrows; slices 8, 10, 12) and

the cerebellum (light blue arrows; slices 2, 4, 6).

4.1. Multi-echo decay

To illustrate signal decay and dropout as a function of echo time, a
simple plot of the inferior slices of a single subject is given in Fig. 3.

Signal decay can be seen clearly as the signal intensity diminishes
from Echo 1 to Echo 3 (top to bottom) in all displayed slices. Signal
dropout from Echo 1 through Echo 3 is particularly evident in the areas
of the orbitofrontal and ventromedial prefrontal cortices, and the infe-
rior and anterior temporal lobe (magenta arrows; slices 8, 10, 12) and
the cerebellum (light blue arrows; slices 2, 4, 6).

4.2. Signal intensity, dropout, and temporal signal-to-noise ratio

We can visually inspect the effect on signal intensity and dropout
when combining multi-echo data or deriving time series from it. Fig. 4A
shows the mean of each of the six time series: Echo 2, T,*-weighted
combination, tSNR-weighted combination, TE-weighted combination,
T,*FIT-weighted combination, and T,*FIT.

It is evident that most echo combination schemes, with the exception
of TE-weighted combination, recover some signal lost due to dropout in
the orbitofrontal and ventromedial prefrontal regions (magenta arrows;
slices 8, 10) and inferior and anterior temporal regions (light blue ar-
rows; slices 6, 8). This signal recovery is further demonstrated in the
tSNR maps provided in Fig. 4B, particularly by the magenta arrows
showing areas of signal dropout in Echo 2 and subsequent recovery in
combined and derived time series tSNR maps. Even the T,*FIT, for which
the tSNR is evidently much lower than all other time series including
Echo 2, recovers some of the signal that is lost due to low BOLD sen-
sitivity in the affected areas, although signal loss is also more evident
(slice 10). Additionally, tSNR in areas close to the bilateral temporal-
occipital junction and towards the occipital lobe (Fig. 4B, green arrows)
appears to increase substantially for all combined time series vs. Echo
2. This is more pronounced in the T,*FIT-weighted compared to the
T,*-weighted and tSNR-weighted combinations, and less so in the TE-
weighted combination.

To provide a more quantified view than these visualisations of signal
intensity (Fig. 4A) and tSNR (Fig. 4B), distribution plots were created for
grey matter tSNR values, both for the whole group and for subjects in-
dividually. These are accessible in the supplementary web-application,
which shows (for example) for sub-001_task-rest run-2 a mean tSNR in-
crease for all combined time series compared to Echo 2, with the T,*FIT-

weighted combination showing the largest increase (36.14%) and the
T,*FIT time series showing a substantial decrease (—55.89%). This gen-
eralises to the whole group (see Fig. 5A), i.e. a mean tSNR increase for
all combined time series compared to Echo 2, with the T,*FIT-weighted
combination showing the largest increase (a comparable 36.95%). This
increase in the tSNR of T,*FIT-weighted combination replicates results
that we previously reported on a different dataset (Heunis et al., 2019).
This relationship also repeats for different regions, as can be seen for
the left motor cortex (Fig. 5B) and the bilateral amygdala (Fig. 5C).

Note, however, that the mean tSNR values increase differentially
based on the region. For the T,*FIT-weighted combination, for exam-
ple, whole brain data show a mean tSNR increase of 36.95%; the left
motor cortex shows a mean tSNR increase of 31.63%; and the bilateral
amygdala shows a mean tSNR increase of 53.35%. Other combined time
series show percentage increases following the same pattern. This could
be explained by the baseline T,*-values in the motor cortex and the
whole brain being closer to the time Echo 2 (28 ms) than the T,*-values
in the amygdala, i.e. that the T,*-weighting of Echo 2 in those regions
is already closer to optimal than the weighting of Echo 2 in the amyg-
dala. This suggests that the amygdala and similarly affected areas with
T,*-values that are different from the average have more to gain from
the multi-echo combination process.

Another noteworthy aspect is the low signal intensity and low tSNR
of the T,*FIT time series. The low signal intensity is explained by the
fact that T,*FIT values correspond to quantified units (ms) that are ex-
pected to be in a certain range (~ 0 to 120 ms for the human brain at
3T, Peters et al., 2007), while the intensity of the standard single and
combined echo images are in analogue units determined by MRI hard-
ware and software. The low tSNR of the T,*FIT time series could be ex-
plained by an increase in time series standard deviation resulting from
the log-linear fitting procedure on noisy data and only using the three
echoes to fit the mono-exponential decay model per volume. This in-
crease in time series noise becomes evident below when investigating T-
statistic values related to task-analysis, and temporal percentage signal
change.

Distributions of grey matter tSNR values are useful for inspecting dif-
ferences in signal increases and dropout recovery between single-echo,
multi-echo combined, and derived timeseries, and enable identifying
new voxels or regions with adequate signal for task (or other) analysis.
However, tSNR does not provide a direct measure of task sensitivity,
i.e. it does not directly tell us whether newly recovered signal/regions
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4B) shown in mean images for the time series in rows from top to bottom:

Echo 2, tSNR-weighted combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT. Scaling for Fig. 4A is given
both for the T2*FIT signal (0-130 ms) and for all the other signals (0-3000 a.u.). All echo combination schemes, with the exception of TE-weighted combination,
recover some signal lost due to dropout in the orbitofrontal and ventromedial prefrontal regions (magenta arrows; slices 8, 10) and inferior and anterior temporal
regions (light blue arrows; slices 6, 8). Slight signal recovery in T2*FIT is visible in the orbitofrontal and ventromedial prefrontal regions (slice 6) although signal
loss is more evident in slice 10. In Fig. 4B, all time series apart from T2*FIT show increases in tSNR (from Echo 2) in areas close to the bilateral temporal-occipital
junction and towards the occipital lobe (green arrows; slice 18), which is more pronounced in the T2*FIT-weighted compared to the T2*-weighted and tSNR-weighted

combinations, and less so in the TE-weighted combination.

would be usefully related to the underlying task. For that reason, fur-
ther measures derived from task analyses like the effect sizes, T-statistic
values, and contrast to noise ratios are important to explore.4.4. Effect
sizes and T-statistics

Fig. 6 shows distribution plots (over all subjects) of the mean PSC
values within the respective FWE-OR regions for all task runs: fin-
gerTapping (Fig. 6A), fingerTappinglmagined (Fig. 6B), emotionProcessing
(Fig. 6C), and emotionProcessinglmagined (Fig. 6D). It is evident from
Fig. 6A through 6D that the effect sizes show a substantial increase for
the T,*FIT time series (from Echo 2) in all tasks (respectively 87.91%,
67.86%, 13.51%, and 43.28%), while displaying a similar or decreased
mean effect size for all combined times series. Data in the supplemen-
tary browser-based application also shows that this increase for T,*FIT
is more pronounced when looking at the effect sizes within their respec-
tive FWE regions (i.e. different activated voxels for each multi-echo de-
rived time series, although mostly overlapping), which one should be
wary of overinterpreting given the inherent circularity of re-analysing
data in voxels that previously passed a significance threshold using the
same data. On the other hand, this result is less pronounced for the time

series effect sizes within their respective atlas-based regions of interest,
mainly resulting in a longer tailed distribution of mean PSC values for
the T,*FIT time series. In some participants the mean PSC values of the
T,*FIT time series even show a slight decrease. These decreases in PSC
disappear when looking at peak effect sizes, as opposed to mean effect
sizes, in all regions of interest. Further differences can be inspected in
depth using the supplementary browser-based application.

To accompany these effect size values, Fig. 7 shows distribution plots
(over all subjects) of the mean T-statistic values in the respective FWE-
OR regions for all task runs: fingerTapping (Fig. 7A), fingerTappinglmag-
ined (Fig. 7B), emotionProcessing (Fig. 7C), and emotionProcessinglmag-
ined (Fig. 7D). For all tasks, it is evident that resulting T-values for the
combined echo time series are very similar in size and distribution to
that of the Echo 2 time series, while T-values for the T,*FIT time series
are notably lower. The low mean T-values of T,*FIT are due to the noise
captured when estimating T,* per-volume using only three data points,
where noisy data would increase standard deviation and decrease the
resulting T-values. This is substantiated by the large decrease in tSNR
we saw for the T,*FIT time series compared to that of the Echo 2 time
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Fig. 5. Distribution / ridge plots of mean grey matter temporal signal-to-noise ratio (tSNR) over all participants and all runs. Plots are shown for (A) the
whole brain, (B) the left motor cortex, and (C) the bilateral amygdala, each displaying a distribution for the six time series from left to right: Echo 2, tSNR-weighted
combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT. In all regions, the mean T2*FIT tSNR decreases from
Echo 2 while the tSNR of all other time series increase, with the T2*FIT-weighted combination showing the largest increase in all regions. Notably, tSNR increases
for all the combined echo time series are more substantial in the amygdala (C) than the other regions (A, B).
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Fig. 6. Distribution plots of mean percentage signal change (PSC) values in the FWE-OR region for each of the four task runs. Plots from top to bottom
are: (A) fingerTapping, (B) fingerTappingImagined, (C) emotionProcessing, and (D) emotionProcessingImagined. PSC values are shown for all six time series, from
left to right: Echo 2, tSNR-weighted combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT. For all tasks,
the T2*FIT time series effect sizes show mean increases above the effect sizes of the Echo 2 time series, while all multi-echo combined time series effect sizes show

similar or decreased means.

series in Figs. 4 and 5. Additionally, the TE-combined time series show
slightly higher T-values for all tasks compared to other combined time
series. However, this slight increase does not persist when analysing
other regions (e.g. FWE or atlas-based) as can be viewed with the sup-
plementary browser-based application.

4.5. Temporal percentage signal change and functional contrast

Temporal percentage signal change is useful to inspect the per-
volume fluctuations of signal in task-related regions. This can be done
for both offline and real-time scenarios but is particularly important for
the latter in applications like region-based neurofeedback. tPSC in the
offline scenario is calculated per volume from minimally processed data,
yielding a per-voxel tPSC time series that can be depicted in a carpet
plot for quality inspection or used for ROI analyses. tPSC for real-time
scenarios is calculated from real-time minimally denoised ROI-averaged
signal (with regards to the mean of the preceding baseline "OFF" block
or with regards to the cumulative total or baseline mean) yielding the
real-time ROI-signal typically used in region-based neurofeedback.

Here we focus on exploring tPSC and functional contrast for the real-
time scenario. While offline tPSC is useful for post-hoc inspection of
signal quality and task activity, it reflects similar data already presented
above in the PSC and T-statistic distributions. Additionally, offline tPSC
does not accurately reflect the effects seen for real-time scenarios where
per-volume calculations can only use information available up to the
most recently acquired volume. For that purpose, minimally processed
data are cumulatively detrended and real-time tPSC is then calculated
with regards to a cumulative baseline mean.

Fig. 8 shows functional contrast for all subjects calculated from real-
time tPSC signals for the fingerTapping and emotionProcessing tasks, in
the FWE-OR and atlas-based regions (the corresponding offline metrics
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can be inspected in detail in the supplementary web-application). The
T,*FIT signal clearly has a larger functional contrast (higher tPSC during
task blocks and lower tPSC during resting blocks) than all other signals,
for which the functional contrasts are very similar. For example, the
minimum percentage increase of T,*FIT functional contrast over Echo
2 functional contrast is 260.61% (from 0.33 to 1.19) in the FWE-OR
region of the emotionProcessing task. Taking supplementary data into
account, there is also an increased functional contrast for the real-time
T,*FIT time series compared to its offline counterpart.

A caveat here is that the T,*FIT time series has the lowest tSNR of
all time series, as noted in Fig. 5. In real-time scenarios, this could di-
minish the benefit of the high functional contrast in that the improved
sensitivity to detect brain activity in an ROI would not necessarily be
temporally stable. To take this into account, the functional contrasts are
divided by the standard deviation of the tPSC time series to yield the
temporal contrast-to-noise ratio (tCNR). This is shown for the FWE-OR
regions in the fingerTapping and emotionProcessing tasks in Fig. 9 below,
along with examples of single-participant real-time tPSC signals for the
same tasks and regions. These plots highlight both functional contrast
and volume-to-volume fluctuations.

Notably, the distributions in Fig. 9A and 9B show a substantial in-
crease in tCNR for the T,*FIT time series versus Echo 2 (97.78% for fin-
gerTapping and 172.31% for emotionProcessing), while the distributions
of all other multi-echo combined time series are very similar in shape
and size to Echo 2. These promising results suggest that the decreased
voxel-wise tSNR of the T,*FIT time series is less detrimental on the level
of the ROI-averaged signal. Offline tCNR calculations (accessible in the
supplementary web-application) however show very similar tSNR dis-
tributions for all time series including T,*FIT and Echo 2. On the level of
individual ROI-averaged signals, Fig. 9C and 9D show tPSC signals in the
FWE-OR regions, with higher amplitude differences for the T,*FIT time
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Fig. 7. Distribution plots of mean statistical T-values in the FWE-OR region for each of the four task runs. Plots from top to bottom are: (A) fingerTapping,
(B) fingerTappingImagined, (C) emotionProcessing, and (D) emotionProcessinglmagined. T-values are shown for all six time series, from left to right: Echo 2, tSNR-
weighted combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT. For all tasks, T-values of the combined
echo time series are very similar in size and distribution shape to that of the Echo 2 time series, while T-values for the T2*FIT time series are notably lower.

series compared to all other time series, echoing the increased functional
contrast seen for the group in Fig. 8. While a slight increase in volume-
to-volume fluctuations relative to the signal amplitude is also visible,
this does not substantially affect tCNR measures.

Another note regarding the tPSC signals shown in Figs. 9C and 9D
is that these visualisations reflect temporally smoothed data, using a
moving 3-point average. In real-time analysis it is common to apply a
windowed averaging filter to the ROI time series in order to increase the
tSNR, which improves the contrast and stability of the neurofeedback
signal. This also improves our ability to classify individual volumes as a
detected or undetected event of activity in cases where binary decision
making is an important step for the specific real-time application. In the
case of Fig. 9 it highlights the functional contrast improvement of the
T,*FIT time series. Note that the tCNR calculations that yielded the data
of Fig. 8 were executed on temporally unsmoothed data. The supplemen-
tary web-application can be used to change views of the tPSC time series
between temporally smoothed and unsmoothed visualisations.

5. Discussion

In this work we presented a comprehensive exploration and evalu-
ation of existing and novel multi-echo combination and T,*-mapping
methods for both real-time and offline BOLD sensitivity improvements.
A resting state and task-based healthy participant dataset was collected,
curated and made available to the community for future investigations.
In this dataset, we investigated five time series derived from multi-echo
data and their differences from a single echo time series (Echo 2): tSNR-
weighted combination, TE-weighted combination, T,*-weighted combi-
nation, T,*FIT-weighted combination, and the T,*FIT time series. These
differences were explored in terms of: temporal signal-to-noise ratio,
percentage signal change as task-based effect size measure, offline and
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real-time temporal percentage signal change in regions of interest, func-
tional contrast in ROIs, and temporal contrast-to-noise ratio in ROIs.

5.1. Results

Our results, across 28 participants, are summarised as follows.
Dropout recovery is more pronounced (in orbitofrontal, ventromedial
prefrontal regions as well as inferior and anterior temporal regions)
for the T,*-weighted, tSNR-weighted, and T,*FIT-weighted combina-
tions than for the TE-weighted combination. All multi-echo combined
time series yield increases in tSNR compared to Echo 2, with the newly-
proposed T,*FIT-weighted combination resulting in the largest increase
in mean tSNR. For the T,*FIT-weighted combination, increases in mean
tSNR are larger for the amygdala than for the left motor cortex or the
whole brain. In contrast, the T,*FIT time series results in a substan-
tial mean decrease in tSNR from Echo 2. Alternatively, the T,*FIT time
series yields the largest effect size measures across all investigated func-
tional tasks and regions, whereas the effect size measures derived from
combined echo time series tend to decrease slightly from those of Echo
2, for all functional tasks. Based on temporal percentage signal change
calculated offline from minimally processed data, the T,*FIT time se-
ries yields the highest functional contrast for all tasks. Similarly, based
on temporal percentage signal change calculated in simulated real-time
from cumulatively denoised data, the T,*FIT time series also yields the
highest functional contrast for all tasks, although this increase is sub-
stantially more than the increase seen for its offline counterpart. For
real-time scenarios, the temporal contrast-to-noise ratio of the T,*FIT
time series is notably higher than all other time series, which are very
similar in size and distribution.

The fact that multi-echo combined time series yields increased tSNR
compared to single echo data has been widely demonstrated in previ-
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Fig. 8. Distributions of functional contrasts calculated from real-time temporal percentage signal change of the fingerTapping and emotionProcessing
tasks. Contrast distributions are shown for both tasks within the FWE-OR region (A and C) and within the atlas-based region (B and D). Signals are colour coded for
Echo 2, tSNR-weighted combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted combination, and T2*FIT. Similar to the offline tPSC
case, the functional contrast (in both tasks) for the T2*FIT time series is greater than the contrasts for all other time series, in both regions, although this is less
pronounced for the emotionProcessing task than for the fingerTapping task. Notably, functional contrast for the real-time T2*FIT time series is substantially increased
compared to its offline counterpart (see supplementary web-application). Functional contrast is presented as differences in percentage signal change (y-axes).

ous research, and has been repeated here for all combined time series
with respect to Echo 2. Additionally, we show that the novel T,*FIT-
weighted combination yields the largest increase, replicating our previ-
ous results from a different dataset (Heunis et al., 2019). In the amyg-
dala, a mean increase in tSNR of 53.35% was calculated across partici-
pants, while the mean increases for the left motor cortex and the whole
brain were respectively 31.63% and 36.95%. These differences suggest
that multi-echo combination, and in particular T,*FIT-weighted combi-
nation, could prove more useful in terms of tSNR for areas traditionally
suffering from suboptimal BOLD sensitivity due to their lower local base-
line T,*-values. On the other hand, improving tSNR in individual regions
could also benefit whole-brain methods where spatially distributed ROIs
or networks are used as the neurofeedback substrate (e.g. connectivity-
based neurofeedback employed by Megumi et al., 2015, or default mode
network-based neurofeedback employed by MacDonald, et al., 2017),
since this would decrease spatial variability in BOLD effects and could
lead to more accurate brain-wide estimates of interest. Note that we did
not explore the approach of averaging the echoes (i.e. simple summa-
tion) as for instance originally proposed in Posse et al. (2001), but this
approach has proven reduced BOLD sensitivity than the rest of combi-
nation approaches investigated here.

While not novel, an important aspect demonstrated here was the
decrease in tSNR for the T,*FIT time series, reported before by others
including Kundu et al. (2017). Importantly, the fitting procedure used to
estimate per-volume T,*- and Sj-values (assuming a mono-exponential
decay curve) yields noisy results that influence the amplitude of the
signal fluctuations with respect to the mean, thus increasing the stan-
dard deviation and decreasing tSNR. The pitfalls of assuming mono-
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exponential (as opposed to multi-compartment) decay and using a fit-
ting procedure with few data points (3 in this case) have been described
before (Whittall et al., 1999) and remain applicable here. Future work
should aim to exploit technical advances such as simultaneous multi-
slice imaging to increase the number of echoes acquired per volume,
while investigating more robust models of T,*-decay.

While tSNR is a useful quantifier of relative spatial signal increases
and dropout recovery, it does not directly measure or represent BOLD
sensitivity. To investigate how multi-echo derived data could improve
our ability to link BOLD changes to neuronal effects, we employed
statistical task-analysis to yield effect size measures to show the ben-
efits of rapid T,*-mapping over single echo fMRI. For all tasks, the
T,*FIT time series consistently yielded the largest standardised effect
size measures in terms of percentage signal change calculated offline
from contrast maps after participant-level GLM analysis, while the ef-
fect sizes for multi-echo combined data decreased slightly. This phe-
nomenon of decreased effect sizes has been reported before for both
optimally combined as well as MEICA-denoised data by Gonzalez-
Castillo et al. (2016). This was reported for 5 subjects performing an
auditory task in a 20 s ON/OFF block paradigm similar to the one in
this work. Gonzalez-Castillo et al. calculated per-volume T,*-maps (i.e.
T,*FIT time series) using the same log-linear fitting approach but with
only two echoes (TE = 31.7 ms and 49.5 ms), also in accordance with
Beissner et al. (2010), and found that the activation extent, effect sizes
and T-statistic values all decreased for the T,* time series compared
to the original single echo time series. In contrast, we observe that the
effect sizes calculated from the T,*FIT time series increase, while the re-
lated T-statistic values decrease (indirectly preempted by the decrease
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Fig. 9. Distributions of mean functional contrast-to-noise ratio (calculated from real-time temporal percentage signal change) of the (A) fingerTapping
and (B) emotionProcessing tasks within the FWE-OR region. Subplots (C) and (D) show individual subject tPSC time series for the same tasks as mentioned,
respectively, for (A) and (B). Signals are colour coded for Echo 2, tSNR-weighted combination, TE-weighted combination, T2*-weighted combination, T2*FIT-weighted
combination, and T2*FIT. Since tCNR is computed from tPSC time series, the tCNR values computed from (C) and (D) represent a single data point per time series
in subplots (A) and (B). The time series visualisations in (C) and (D) reflect temporally smoothed data, using a moving 3-point average. Transient fluctuations for
the first two volumes in (C) and (D), ascribed to differences in calculating real-time tPSC (using the cumulative baseline mean) versus offline tPSC (using a full time
series mean) were zeroed across all six time series in order to remove their biasing effects on tCNR calculations.
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in tSNR). This difference in the change of the effect size with respect
to Echo 2 might be explained by the use of three echoes in our calcula-
tion of the T,*FIT time series, instead of two echoes, that could result in
reduced accuracy of the T,* estimates. This hypothesis can, in fact, be
tested using the current rt-me-fMRI dataset, although that is considered
beyond the scope of this work.

The T,*FIT time series also consistently yielded the largest functional
contrasts in terms of differences in task vs. baseline amplitudes in tPSC
signals calculated from offline and real-time data. As an example, we ob-
serve an 87.91% increase in mean PSC (T,*FIT compared to Echo 02) for
the FWE-OR region of the fingerTapping task, and increases in functional
contrast for the same task and region of 100% and 293%, respectively for
offline and real-time scenarios. Interestingly, functional contrast for the
real-time calculated tPSC signal showed an increase above the functional
contrast calculated from offline data. The main mathematical difference
in real-time vs offline approaches that this could be ascribed to is the
cumulative calculation vs offline calculation, especially as regards the
mean (cumulative baseline mean vs full time series mean). Beyond the
functional contrast, the temporal contrast-to-noise ratio of the real-time
tPSC signals were calculated to control for relative signal fluctuations,
especially considering the low tSNR of T,*FIT. Even so, the T,*FIT time
series consistently yielded the largest tCNR increase above Echo 2 for
all tasks (e.g. 97.78% for the fingerTapping task), suggesting its benefits
for improving BOLD sensitivity in real-time use cases.

This apparent contradiction of low tSNR versus high offline PSC and
high real-time tCNR is worth exploring. Theoretically, we should expect
an increase in BOLD sensitivity when analysing quantified T,* fluctua-
tions versus fluctuations in single echo image intensity, since the sepa-
ration of T,*- and S, should remove (to a considerable extent) system-
level, inflow, and subject-motion effects from the T,*-signal. What is
left in the form of voxel-based T,*FIT-values would then theoretically
be more indicative of local neuronal activity than information derived
from single echo data, assuming noise from the fitting procedure and
other confounding factors do not attenuate this contrast substantially.
Kundu et al. (2017) suggested that, even given a noisy fitting proce-
dure, direct T,* and S, fitting can be valid for separating low-frequency
BOLD changes, while not ideal for higher frequency modulations that
could alias with fitting error variations. In the task and ROI signal anal-
yses presented here, as well as in the intended offline and real-time
use cases of the presented methods, ON/OFF block paradigms generate
slow BOLD changes where volume-to-volume fluctuations are averaged
out to generate summary measures. This could explain, in part, the ab-
sence of detrimental effects resulting from the low tSNR. We also note
that several levels of spatial smoothing applied to the real-time use case
(whole volume spatial smoothing, followed by in-ROI voxel averaging)
are bound to increase the tSNR of the ROI signal from which the tCNR
is calculated. This likely counteracts the low tSNR of the T,*FIT time
series that conversely attenuates T-values in the offline use case. Addi-
tionally, acquisition parameters can have important influences on signal
noise and parameter fitting error. Large voxel sizes (in this case 3.5 mm
isotropic) are known to increase SNR and can be a contributing factor
to the promising result reported in this work.

In terms of practical applicability to real-time fMRI research, we
have shown the usefulness of multi-echo for real-time use cases in a 28-
person dataset with several functional task designs. We demonstrate that
real-time T,*FIT-weighted combination yields brain wide mean tSNR
increases and improves signal recovery in regions affected by dropout,
compared to single echo and other combined multi-echo time series.
We show additionally that the real-time T,*FIT time series yields large
functional contrast and tCNR increases compared to single echo or com-
bined multi-echo time series. These improvements could benefit both
real-time brain wide connectivity measures and real-time region-based
signals, respectively, showing the possible utility for studies on adaptive
paradigms and neurofeedback.

Lastly, we have shown that real-time multi-echo processing, specif-
ically rapid T,*-mapping and subsequent multi-echo combination is
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technically viable and practically supported. The software tools gen-
erated through this work (and shared with the community) support
several per-volume or real-time multi-echo processing operations, in-
cluding real-time 3D realignment of multi-echo data, real-time esti-
mation of multi-echo decay parameters, real-time multi-echo combina-
tion using several weighting schemes, and multiple standard real-time
preprocessing steps. It provides a practical toolkit for exploring real-
time multi-echo fMRI data and for comparing the effects of acquisition
and processing settings on BOLD sensitivity in individuals. Addition-
ally, the interactive browser application allows easy access to the results
(https://rt-me-fmri.herokuapp.com/), while the provision of supporting
material and code (https://github.com/jsheunis/rt-me-fMRI) allows the
presented results to be reproduced and allows replication attempts to be
conducted on future datasets.

5.2. Limitations and future work

It remains important to consider caveats before further implementa-
tions and in order to direct future work. To start, we note that the rt-
me-fMRI dataset does not include field maps and consequently no field
map-based distortion correction steps were applied. To counter this ab-
sence, the alignments of the anatomical masque, as well as the derived
tissue segmentation masks, and the EPI data were visualised, inspected
and the overlap was found acceptable.

As regards the acquisition of a resting-state run from which to esti-
mate T,* before the start of a real-time session, future work could look
into other acquisition types to improve the quality of prior T,*-maps. For
example, sequences like multi-echo GRE or ME-MP2RAGE (Metere et al.,
2017; Sun et al., 2020), or multi-echo EPI sequences with a longer TR
and more echoes, can all yield a more accurate T,* estimation. Further
changes to the acquisition strategy of the real-time runs may also benefit
future applications. We mentioned voxel sizes above, but other aspects
like increases in the number of receive coils, improvements in the im-
plementation of acceleration techniques such as GRAPPA or SENSE, and
field strength increases can all lead to lower levels of volume-to-volume
noise and subsequent parameter estimations.

Regarding the exploration of tSNR improvements in multi-echo-
derived data versus single-echo data, we note that these improvements
can stem from different sources. For example, tSNR increases due to
multi-echo weighting can originate from signal recovery (i.e. the mean
signal owing to the first echo) or decrease of noise fluctuations due to the
averaging. Additionally, tSNR changes could be different across brain
regions and tissue types (for instance from grey versus white matter or
CSF). Further work to delineate the exact origin of spatial variations of
such tSNR improvements will allow future applications to gain use-case-
specific benefits. Such investigations should also look closely at changes
accompanying different acquisition strategies highlighted above.

In the described preprocessing pipeline, probabilistic cytoarchitec-
tonic maps in MNI152 space (from Eickhoff et al., 2005) were co-
registered to the subject functional space to create subject-specific re-
gions of interest. It should be mentioned that these are less subject-
specific than alternatives derived from individual anatomical features
(such as those generated by the freesurfer software package), which
points to an option for future improvement. Furthermore we note, as
did Clare et al. (2001), that the selection of the region of interest within
which to investigate activation effects, functional contrast, tSNR and
more, can increase the variability of results and subsequent inferences.
This issue was evaluated here considering three different ways of delin-
eating the region of interest: FWE, FWE-OR, and atlas-based, and we
observed attenuation of effect sizes, T-values and functional contrast as
regions become less spatially matched to participants’ functional acti-
vation localisation. This is particularly important for the real-time neu-
rofeedback context, where a predefined subject-specific region of inter-
est is often required to enable real-time region-based signal extraction.
This concern about variability in the performance due to ROI definition
extends to the implementation of real-time denoising steps as well, as
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noted in our previous work on denoising steps in neurofeedback stud-
ies (Heunis et al., 2020b). In the current study, we intentionally imple-
mented a minimal real-time processing pipeline to avoid confounding
the results.

As summarised in the results discussion above, standardised effect
sizes resulting from task analysis of all multi-echo combined time series
were very similar in size and distribution, and on average much lower
than that of the T,*FIT time series. This phenomenon could benefit from
follow-up confirmatory analyses in a future study. Another claim that
could be usefully extended into a follow-up investigation is the deci-
sion to include all participants in the study irrespective of the amount
of motion in their data. As an example, some multi-echo combination
schemes may be more or less robust to head motion, and the inclusion of
all subjects would allow investigating such variations in higher versus
lower motion subjects. Lastly, a key next step for extending the investi-
gation of multi-echo use in offline task analysis is to examine activation
clusters in more detail. This work looked at PSC and T-values in specific
regions, but an important question to test would be whether multi-echo
combined or derived times series yield activation clusters in new or un-
expected brain regions, or how they affect existing activation clusters in
terms of effect size and extent.

The supplementary web-application can also be seen as an evolving
resource where other useful metrics, results and visualisations can be
added in future. Examples of such additions include pairwise percent-
age differences in comparison metrics between the different multi-echo
combined and derived time series and Echo 2; investigations into new
or varying activation clusters resulting from multi-echo time series; or
any other aspects covered here as future work.

While the presented benefits of multi-echo fMRI for real-time exper-
iments are promising, further work is necessary to quantify the effects
of a full multi-echo and real-time denoising pipeline on BOLD sensitiv-
ity and data quality. Taking into consideration the caveats discussed
here, we advise researchers planning real-time fMRI studies to design
and conduct effective pilot studies and to evaluate the effects robustly
before deciding on the optimal multi-echo implementation settings
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