000904411 001__ 904411
000904411 005__ 20220131120426.0
000904411 0247_ $$2doi$$a10.1038/s42003-021-02268-x
000904411 0247_ $$2Handle$$a2128/29954
000904411 0247_ $$2altmetric$$aaltmetric:107604545
000904411 0247_ $$2pmid$$apmid:34127795
000904411 0247_ $$2WOS$$aWOS:000663716200006
000904411 037__ $$aFZJ-2021-05981
000904411 082__ $$a570
000904411 1001_ $$00000-0001-7096-337X$$aPark, Bo-yong$$b0$$eCorresponding author
000904411 245__ $$aInter-individual body mass variations relate to fractionated functional brain hierarchies
000904411 260__ $$aLondon$$bSpringer Nature$$c2021
000904411 3367_ $$2DRIVER$$aarticle
000904411 3367_ $$2DataCite$$aOutput Types/Journal article
000904411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641469476_6849
000904411 3367_ $$2BibTeX$$aARTICLE
000904411 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904411 3367_ $$00$$2EndNote$$aJournal Article
000904411 520__ $$aVariations in body mass index (BMI) have been suggested to relate to atypical brain organization, yet connectome-level substrates of BMI and their neurobiological underpinnings remain unclear. Studying 325 healthy young adults, we examined associations between functional connectivity and inter-individual BMI variations. We utilized non-linear connectome manifold learning techniques to represent macroscale functional organization along continuous hierarchical axes that dissociate low level and higher order brain systems. We observed an increased differentiation between unimodal and heteromodal association networks in individuals with higher BMI, indicative of a disrupted modular architecture and hierarchy of the brain. Transcriptomic decoding and gene enrichment analyses identified genes previously implicated in genome-wide associations to BMI and specific cortical, striatal, and cerebellar cell types. These findings illustrate functional connectome substrates of BMI variations in healthy young adults and point to potential molecular associations.
000904411 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904411 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904411 7001_ $$00000-0001-5681-8918$$aPark, Hyunjin$$b1
000904411 7001_ $$0P:(DE-HGF)0$$aMorys, Filip$$b2
000904411 7001_ $$0P:(DE-HGF)0$$aKim, Mansu$$b3
000904411 7001_ $$0P:(DE-HGF)0$$aByeon, Kyoungseob$$b4
000904411 7001_ $$0P:(DE-HGF)0$$aLee, Hyebin$$b5
000904411 7001_ $$0P:(DE-HGF)0$$aKim, Se-Hong$$b6
000904411 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie L.$$b7
000904411 7001_ $$00000-0002-0945-5779$$aDagher, Alain$$b8
000904411 7001_ $$00000-0001-9256-6041$$aBernhardt, Boris C.$$b9
000904411 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-021-02268-x$$gVol. 4, no. 1, p. 735$$n1$$p735$$tCommunications biology$$v4$$x2399-3642$$y2021
000904411 8564_ $$uhttps://juser.fz-juelich.de/record/904411/files/s42003-021-02268-x.pdf$$yOpenAccess
000904411 909CO $$ooai:juser.fz-juelich.de:904411$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b7$$kFZJ
000904411 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904411 9141_ $$y2021
000904411 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-06-15
000904411 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904411 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2019$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904411 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-06-15
000904411 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-06-15
000904411 920__ $$lyes
000904411 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000904411 980__ $$ajournal
000904411 980__ $$aVDB
000904411 980__ $$aUNRESTRICTED
000904411 980__ $$aI:(DE-Juel1)INM-7-20090406
000904411 9801_ $$aFullTexts