000904415 001__ 904415
000904415 005__ 20220131120426.0
000904415 0247_ $$2doi$$a10.1080/17588928.2020.1867084
000904415 0247_ $$2ISSN$$a1758-8928
000904415 0247_ $$2ISSN$$a1758-8936
000904415 0247_ $$2Handle$$a2128/29991
000904415 0247_ $$2pmid$$a33406985
000904415 0247_ $$2WOS$$aWOS:000605657900001
000904415 037__ $$aFZJ-2021-05985
000904415 082__ $$a610
000904415 1001_ $$0P:(DE-Juel1)176497$$aWiersch, Lisa$$b0$$ufzj
000904415 245__ $$aSex differences in the brain: More than just male or female
000904415 260__ $$aHove$$bPsychology Press$$c2021
000904415 3367_ $$2DRIVER$$aarticle
000904415 3367_ $$2DataCite$$aOutput Types/Journal article
000904415 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641562076_18961
000904415 3367_ $$2BibTeX$$aARTICLE
000904415 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904415 3367_ $$00$$2EndNote$$aJournal Article
000904415 520__ $$aSex differences in the brain are widely studied, but results are often inconsistent and it is assumed that many negative findings are not even being reported. The lack of consistent findings might be based on the highly questionable assumption of a clear-cut sexual dimorphism in brain structure and function, that underlies commonly used group comparisons between males and females. Without having to rely on this assumption, state of the art statistical learning methods based on large neuroimaging data sets might offer the tools necessary to disentangle the complex pattern of sex-related variations in brain structure and organization.
000904415 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904415 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904415 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b1$$eCorresponding author
000904415 773__ $$0PERI:(DE-600)2542443-9$$a10.1080/17588928.2020.1867084$$gVol. 12, no. 3-4, p. 187 - 188$$n3-4$$p187 - 188$$tCognitive neuroscience$$v12$$x1758-8928$$y2021
000904415 8564_ $$uhttps://juser.fz-juelich.de/record/904415/files/PCNS_A_1867084-1.pdf$$yRestricted
000904415 8564_ $$uhttps://juser.fz-juelich.de/record/904415/files/submission_commentary_cogneurosci20.pdf$$yOpenAccess
000904415 909CO $$ooai:juser.fz-juelich.de:904415$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176497$$aForschungszentrum Jülich$$b0$$kFZJ
000904415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b1$$kFZJ
000904415 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904415 9141_ $$y2021
000904415 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOGN NEUROSCI-UK : 2019$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904415 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904415 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904415 920__ $$lyes
000904415 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000904415 980__ $$ajournal
000904415 980__ $$aVDB
000904415 980__ $$aUNRESTRICTED
000904415 980__ $$aI:(DE-Juel1)INM-7-20090406
000904415 9801_ $$aFullTexts