001     904428
005     20220131120426.0
024 7 _ |a 10.1016/j.neuroimage.2021.118207
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 2128/30208
|2 Handle
024 7 _ |a altmetric:106504030
|2 altmetric
024 7 _ |a pmid:34048901
|2 pmid
024 7 _ |a WOS:000672584900003
|2 WOS
037 _ _ |a FZJ-2021-05998
082 _ _ |a 610
100 1 _ |a Haugg, Amelie
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642090327_4888
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Renz, Fabian M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nicholson, Andrew A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lor, Cindy
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Götzendorfer, Sebastian J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sladky, Ronald
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Skouras, Stavros
|0 P:(DE-HGF)0
|b 6
700 1 _ |a McDonald, Amalia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Craddock, Cameron
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hellrung, Lydia
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kirschner, Matthias
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Herdener, Marcus
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Koush, Yury
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Papoutsi, Marina
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Keynan, Jackob
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Hendler, Talma
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Cohen Kadosh, Kathrin
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Zich, Catharina
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kohl, Simon H.
|0 P:(DE-Juel1)173070
|b 18
|u fzj
700 1 _ |a Hallschmid, Manfred
|0 P:(DE-HGF)0
|b 19
700 1 _ |a MacInnes, Jeff
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Adcock, R. Alison
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Dickerson, Kathryn C.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Chen, Nan-Kuei
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Young, Kymberly
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Bodurka, Jerzy
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Marxen, Michael
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Yao, Shuxia
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Becker, Benjamin
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Auer, Tibor
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Schweizer, Renate
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Pamplona, Gustavo
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Lanius, Ruth A.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Emmert, Kirsten
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Haller, Sven
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Van De Ville, Dimitri
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Kim, Dong-Youl
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Lee, Jong-Hwan
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Marins, Theo
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Megumi, Fukuda
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Sorger, Bettina
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Kamp, Tabea
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Liew, Sook-Lei
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Veit, Ralf
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Spetter, Maartje
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Weiskopf, Nikolaus
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Scharnowski, Frank
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Steyrl, David
|0 P:(DE-HGF)0
|b 47
773 _ _ |a 10.1016/j.neuroimage.2021.118207
|g Vol. 237, p. 118207 -
|0 PERI:(DE-600)1471418-8
|p 118207 -
|t NeuroImage
|v 237
|y 2021
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/904428/files/1-s2.0-S1053811921004845-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904428
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)173070
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-11-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21