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Abstract: Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested 
as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and 
psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic 
resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N=480 patients 
in experimental and N=194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies 
and explored its relationship with the number of sessions as a potential proxy for a dose-effect response. We also attempted to group 
studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In 
most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply 
with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental 
designs and reporting standards for neurofeedback training.  
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1. Introduction 
 
Major depressive disorder (MDD) is a serious mental disorder characterized by at least one depressive episode lasting for two or more 
weeks (Association, 2013). This episode includes symptoms such as changes in cognition, reduced mood, interest or pleasure, and 
vegetative complaints (Otte et al., 2016). MDD has been recognized as a major public health challenge because of the increasing number 
of cases worldwide. For Western countries, it is estimated that MDD affects one in every five to six adults (Bromet et al., 2011; Patten, 
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2009). MDD represents a major risk factor for suicide attempts (Hoertel et al., 2015; Olfson et al., 2017). Moreover, MDD patients often 
suffer from comorbid psychiatric conditions (Alonso and Lépine, 2007), which increases the burden on patients and their families.  

Current treatments mainly include psychotherapy or pharmacotherapy (Kupfer et al., 2012). The most widely used type of 
psychotherapy for depression is cognitive behavioral therapy (CBT), which aims to identify the cognitive factors leading to depressive 
symptoms and develop mental and behavioral strategies to cope with these (Otte et al., 2016). Another psychotherapeutic approach 
developed for the treatment is cognitive bias modification, which aims to readjust negative attention biases commonly observed in 
depressed patients (Fodor et al., 2020). The mainstay of current pharmacotherapy for depression are monoaminergic antidepressant 
drugs (Sharp, 2012). However, around one third of depressed patients do not respond to these conventional treatments (Fava and 
Davidson, 1996; Rush et al., 2006). Other therapeutic options include non-invasive brain stimulation such as transcranial magnetic 
stimulation (TMS) and electroconvulsive therapy (ECT), for which several stimulation protocols have been developed that show 
superiority compared to sham stimulation (Mutz et al., 2019). However, TMS and ECT can yield aversive effects, including local pain, 
headache and discomfort (Cusin and Dougherty, 2012; Rossi et al., 2009). Some ECT patients report acute but partly also persistent side 
effects of amnesia and cognitive disturbances following treatment (Sackeim et al., 2007). Lastly, invasive electrical deep brain 
stimulation (DBS) of subcortical and cortical areas is currently explored for its clinical potential (Delaloye and Holtzheimer, 2014), 
although most recent findings remain inconclusive and have sparked a debate in the field (Bari et al., 2018). One common feature of 
electrical or magnetic brain stimulation treatments, shared with pharmacological treatment, is that patients remain passive recipients of 
the intervention.  

In contrast, non-invasive neurofeedback training is a neuromodulation technique that involves patients as protagonists of their 
treatment. Patients learn self-regulating particular features of brain activity (Sitaram et al., 2017) by actively engaging in processes 
which are often adopted from techniques used in psychotherapy (Arns et al., 2017; Fovet et al., 2015). However, given the current 
discussion regarding the specificity and efficacy of neurofeedback protocols across psychiatric disorders (Thibault et al., 2018), a formal 
evaluation within specific conditions is much needed. MDD can be considered one of the most extensively studied applications of 
neurofeedback training, with the first case studies reported more than two decades ago (Baehr et al., 1997; Earnest, 1999; Rosenfeld et 
al., 1996). This systematic review pursues three main goals: First, we describe the different neurofeedback protocols that have thus far 
been explored with MDD patients and the main clinical and neural outcomes of these studies. Second, we summarize reported clinical 
changes and evaluate their efficacy. Lastly, we assess the study design and reporting quality of published research articles. We discuss 
limitations and open challenges, closing with a set of recommendations for future neurofeedback studies in MDD that may help 
advancing the field.  
 
1.1 Description of a neurofeedback system 
 
Neurofeedback is a non-invasive technique that provides the user with real-time feedback about their neural self-regulation performance. 
Feedback is commonly provided from areas that are thought of as putative neural substrates underlying specific behaviors or pathologies 
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(Kim and Birbaumer, 2014; Sitaram et al., 2017). For instance, one well described and commonly found symptom in MDD is low mood. 
Several neurofeedback studies trained patients on neural correlates of emotion regulation with the aim to improve this capacity and the 
depressive symptom(s) related to low mood. Different imaging modalities have been used to train self-regulation in healthy participants 
and/or patients, including electroencephalography (EEG), magnetic encephalography (MEG), functional magnetic resonance imaging 
(fMRI), and functional near-infrared spectroscopy (fNIRS) (Thibault et al., 2016). Irrespective of the imaging modality, neurofeedback 
interventions usually consist of four main steps (Paret et al., 2019; Sitaram et al., 2017): 1) identifying the neural target (i.e., correlate 
of a symptom or skill) either by the means of functional data during a so-called localizer session or based on previous anatomical 
hypotheses using masks, 2) recording the neural activity of this neural target, 3) processing these measures while ideally controlling for 
potential artefacts and 4) presenting real-time feedback of this signal to the user.  

At the recording stage, i.e. step one and two, the nature of brain signals needs to be considered as it differs between imaging 
modalities such as EEG and fMRI. For instance, EEG  has been frequently used in depressed patients to search for neural correlates of 
mental states and later explored to develop neurofeedback protocols (Enriquez-Geppert et al., 2017; Gruzelier, 2014). EEG uses scalp 
electrodes, which similar to MEG, measure local field potentials (LFPs). LFPs represent the summed activity of local neural populations 
reflecting the electric potential in the extracellular space. Hence, EEG signals are largely determined by post-synaptic activity providing 
a direct measure of neural activity (Da Silva, 2009). fMRI is another neuroimaging technique that is increasingly used for neurofeedback 
experiments in depression (Watanabe et al., 2017; Weiskopf, 2012). This technique uses the blood oxygen level dependent (BOLD) 
contrast, a measure for the relative changes in local blood oxygenation that result from the metabolism of brain cells. fMRI hence 
provides an indirect measure of neural activity. More recently, fNIRS has gained the attention of the neurofeedback community (Kohl 
et al., 2020). fNIRS uses near-infrared light to measure local changes in oxygen concentrations in cortical gyri (Hoshi, 2003; Strangman 
et al., 2002; Villringer et al., 1993); these strongly correlate with the fMRI BOLD signal (Cui et al., 2011; Huppert et al., 2006; 
Strangman et al., 2002). Different neuroimaging technologies have their advantages and disadvantages, in particular, for real-time 
experiments (Thibault et al., 2016). For example, EEG provides higher temporal resolution and reduced cost compared to fMRI and 
fNIRS, and wireless-EEG systems provide new perspectives for portable therapeutic applications in the near future (De Vos et al., 2014; 
Ries et al., 2014). Conversely, fMRI possesses a higher spatial resolution, which allows the development of protocols that target both 
cortical and subcortical areas composing the circuitry of interest (Sulzer et al., 2013; Weiskopf, 2012). Multi-modal neurofeedback 
approaches attempt to bridge these advantages and compensate for some disadvantages by combining two or more neuroimaging 
techniques (Mano et al., 2017). For instance, these studies may benefit from the spatial resolution of fMRI and temporal resolution of 
EEG, combining these with the aim to achieve higher self-regulation performance (Perronnet et al., 2017).  

The third step involves data processing methods. However, in real-time experiments, data preprocessing and data acquisition are 
quasi-simultaneous (depending on the delay of the respective imaging technique) such that recorded brain signals are continuously 
converted to an output system (Sitaram et al., 2017). For all brain imaging modalities noise-reduction methods are essential to increase 
the validity of the feedback; they are ideally applied to filter non-neural signal sources, such as the electrooculography (EOG) and 
electromyography (EMG) in EEG-based protocols (Moretti et al., 2003), or respiration and pulse waves in fMRI-based protocols 
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(Murphy et al., 2013). Artifact corrected time-series are subsequently processed to calculate values that are subsequently used for 
feedback presentation. These values can be based on signal changes with respect to baseline in individual brain areas, correlations 
between time series of different brain areas (connectivity based feedback) (Koush et al., 2013; Ramot et al., 2017), or the output of more 
complex algorithms that classify different brain states based on variations in brain activity patterns (Watanabe et al., 2017). However, 
all these processing methods vary according to the neurofeedback paradigm and are subject to ongoing methodological research and 
development (Brigadoi and Cooper, 2015; Heunis et al., 2019; Heunis et al., 2020; Hinterberger et al., 2003; Krusienski et al., 2006; 
Lotte et al., 2007).  

The fourth and final design step concerns the presentation of real-time feedback. Although visual feedback is the most common 
approach, other feedback modalities can also be used in this stage and include auditory, vibrotactile, electrical or proprioceptive 
stimulation (Sitaram et al., 2017). The feedback setup should be carefully designed because it can cause distraction, frustration, or even 
induce negative emotions in users (Birbaumer et al., 2013; McFarland et al., 1998). The feedback system should constantly update the 
trainee about the targeted neural activity. Such real-time feedback allows the trainee to create, correct and optimize a mental or 
behavioral control strategy and thereby to achieve the desired level of proficiency in self-regulating neural activity (Birbaumer et al., 
2013; Curran and Stokes, 2003).  
 
1.2. Study design and non-specific effects of neurofeedback protocols 

 
When conceptualizing this systematic review we were guided by a recently published consensus statement that discussed different 
mechanisms responsible for driving the outcomes of a neurofeedback experiment (Ros et al., 2020). The authors identified five potential 
contributors (Micoulaud-Franchi and Fovet, 2018; Ros et al., 2020): neurofeedback-specific effects, which are related to the actual 
training of a target neurophysiological variable (e.g., increased or decreased functional connectivity between trained ROIs); non-specific 
neurofeedback effects, associated to the neurofeedback context, but not to the trained neural signals (e.g., the high-tech 
environment); general non-specific effects, which are caused by psychosocial influences (e.g., believe-based expectations); repetition 
related effects, referring to the recurrence of training (e.g., test-retest improvements due to mental imagery tasks employed in 
neurofeedback paradigms); and, finally, natural effects, associated to natural events in life (e.g., natural recovery or remission). The 
extent to which these factors contribute to overall clinical effects as observed in experimental (and to some degree also control) groups 
remains subject to ongoing and future research. Given that all potentially contributing factors as listed above likely play a role, and that 
they even interact with each other, some authors recently described neurofeedback as a complex intervention when studied in a clinical 
context (Craig et al., 2008; Sorger et al., 2019).  

Similar to other interventions, developing a neurofeedback paradigm for clinical application requires several phases. 
Uncontrolled single-group designs are suitable for the early phase, for instance, to assess technical feasibility and acceptability of the 
paradigm in a healthy or patient sample. "Exploratory trials" may also serve to optimize the intervention in the targeted patient population 
(similarly to Phase I Clinical Trial designs) (Sorger et al., 2019). However, single-group designs cannot control for non-specific effects. 
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Thus, further experiments with appropriate control conditions are needed during later phases to disentangle the neurofeedback-specific 
outcomes from those caused by other (psychosocial) mechanisms (Thibault et al., 2018; Thibault and Raz, 2016). 

One main challenge that the neurofeedback field currently faces is that standards for the design of randomized controlled trials 
are traditionally based on the requirements that pharmacological studies need to fulfill. This challenge pertains in particular to the design 
of control conditions and risk of unblinding. For instance, in pharmacological studies the control group can receive a highly comparable 
treatment that omits the active component to drive improvement (Linden, 2014; Thibault et al., 2018). In such trials where participants 
receive so-called passive treatment (i.e., the intervention does not require a specific engagement in a task), the design of control 
conditions mainly need to account for belief-based expectations (commonly referred to as “placebo effects”) rather than a range of 
contributing factors as listed above. Moreover, complex interventions such as neurofeedback that involve active engagement of the 
participant have their own requirements to ensure blinding (Linden, 2014; Sorger et al., 2019) (noteworthy, the design of appropriate 
placebo control conditions also remains subject for discussion in the pharmacological literature (Jensen et al., 2017; Moncrieff et al., 
2004)). 

Recent discussions in the field have therefore resulted in new best-practice research recommendations for different control 
conditions (for a detailed framework, please refer to (Sorger et al., 2019)). For this review, we grouped control conditions into three 
main categories: 

 Passive control: this category includes control conditions that involve continued standard care only. Passive control conditions 
can reveal whether the neurofeedback has clinically significant benefit as a stand-alone, or add-on, intervention compared to 
standard care, for instance (Choi et al., 2011; Escolano et al., 2014; Wang et al., 2019; Wang et al., 2016). While this design 
controls for natural effects (e.g., regression to the mean), it does not control for any general or neurofeedback training related 
non-specific effects. 

 Active control outside the scanner: this category includes control conditions where the participant is engaging in a similar mental 
task, but outside of the neuroimaging scanner (Jaeckle et al., 2019; Linden et al., 2012). This condition is also referred to as a 
mental-rehearsal control (Sorger et al., 2019). In addition to natural effects, it also allows to control for repetition related effects 
that occur by merely engaging in the behavioral/cognitive strategy.  

 Active control inside the scanner: this category includes a variety of approaches in which the patient is actively performing a 
task inside the scanner and that may either control for neurofeedback specific effects, non-specific neurofeedback effects, or both 
(for a more detailed overview, please refer to [61]). For example, patients in the control group are trained to self-regulate their 
brain activity in the same ROI but in the opposite direction of the experimental group. In an alternative design, they receive 
feedback from a different ROI or network using an alternative strategy (Mehler et al., 2018). Such designs match groups for 
some general non-specific and non-specific neurofeedback effects such as motivation, received reward during training, the high-
tech environment, or the interaction with the experimenter and allow testing for neurofeedback specific effects (Thibault and 
Raz, 2016; Wood and Kober, 2018). Other approaches present feedback based on signals from a different brain source not 
associated with the brain function targeted in the experimental group (Young et al., 2017b; Young et al., 2014), sham signal 
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(e.g., randomly generated), non-neural sources (e.g., other biological features) or yoked data (e.g., data from a different 
participant (Hamilton et al., 2016)). However, it is essential to match groups for perceived rewards and evaluate to which extent 
patients remain "blind", considering that previous studies report that they could detect non-contingency and experienced adverse 
effects such as frustration and reduced motivation (Sorger et al., 2019).  

Finally, it is also relevant to design "double-blind" or “triple blind” trial designs where the rater, participant and neurofeedback 
operator are blinded to the treatment condition. While only a few neurofeedback software packages are currently capable to blind the 
neurofeedback operator (Ros et al., 2020), double-blinding/triple-blinding can alternatively be achieved with two experimenters (these 
are either responsible for operating, and if necessary programming, the experiment or interacting with participants  (Arnold et al., 2013)) 
in addition to  independent and blinded research or clinical staff who assess the outcomes (Ros et al., 2020). 
 
1.3. Rationale for the use of neurofeedback for MDD 
 
 Neurofeedback feasibility studies have yielded first promising results in different non-clinical and clinical applications ranging 
from athletic performance (Mirifar et al., 2017) to motor rehabilitation for neurodegenerative disorders and stroke (Krucoff et al., 2016; 
Linden and Turner, 2016). In neuropsychiatry, small randomized controlled studies have shown benefits for different disorders. For 
example, EEG-based training protocols were successfully applied to substance abuse disorders, eating disorders, attention-
deficit/hyperactivity disorder, autism spectrum disorder, tinnitus, and obsessive-compulsive disorder, while fMRI-based training 
protocols have been successfully applied to attention-deficit/hyperactivity disorder (ADHD), post-traumatic stress disorder, 
schizophrenia, Alzheimer’s disease, Tourette Syndrome, autism spectrum disorder, overweight/obesity, chronic pain, spider phobia, and 
obsessive-compulsive disorder (Arns et al., 2017; Sitaram et al., 2017; Thibault et al., 2018). These studies provide preliminary data 
suggesting that neurofeedback training may be effective in changing brain function and treating some neuropsychiatric symptoms, 
including those related to disturbances in the reward system. Noteworthy, clinical effects have been reported to last also during 
longitudinal follow-ups (Becerra et al., 2006; Gevensleben et al., 2010; Goldway et al., 2019; Mehler et al., 2018; Rance et al., 2018). 

Most neurofeedback training paradigms are informed by neurophysiological or computational models suggested to explain the 
genesis of depressive symptoms. Thereby, this technique provides potentially a new way to directly test for the causal validity of reported 
biomarkers (Mehler and Kording, 2018; Micoulaud-Franchi et al., 2019). Similar to brain stimulation protocols (e.g. TMS or DBS) most 
neurofeedback protocols aim to modulate local activity. Importantly, the neurofeedback acts as an “endogenous” stimulator, reducing 
issues related to safety or side effects from conventional neuromodulation approaches. Additionally, such a form of non-invasive, 
endogenous neuromodulation puts the patient at the center of the intervention and may hence result in beneficial psychophysiological 
and psychosocial effects (see below) (Linden, 2014).  

Besides local functional changes, several studies have also reported remote effects of neurofeedback training at the network 
level. For instance, neurofeedback training has been reported to alter intrinsic functional connectivity (Hampson et al., 2011; Scheinost 
et al., 2013) and directed effective connectivity (Zotev et al., 2011; Zotev et al., 2013). Moreover, these alterations (and related 
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symptomatic improvements) were partly found to persist for months, supporting the idea of long-term changes in network organization 
(Megumi et al., 2015). Reports of long lasting network changes and associated clinical improvement render neurofeedback training a 
particularly promising approach to treat patients that present with abnormal connectivity patterns in brain networks relevant for affective 
and cognitive processing (Hamilton et al., 2015; Mulders et al., 2015).  

Cognitive processes that have been suggested to contribute to the pathophysiology of depression include biased attention and 
processing of negative stimuli, recall of negative memories (Lewinsohn and Rosenbaum, 1987; Sato and Kawahara, 2011), and recurrent 
negative thoughts (rumination) (Beck, 2008; Clark and Beck, 2010; Disner et al., 2011). These cognitive processes share underlying 
brain structures which are commonly reported as showing abnormal activity, or connectivity, in patients with depression, such as the 
lateral and medial prefrontal cortex (PFC), anterior cingulate cortex (ACC), amygdala, hippocampus, and striatum (Groenewold et al., 
2013; Kaiser et al., 2015). Thus, the majority of neurofeedback protocols for MDD aim to directly or indirectly rebalance these networks. 
For instance, in fMRI-based protocols these areas are the ones commonly targeted for self-regulation, as individual ROIs (Jaeckle et al., 
2019; Young et al., 2017b; Young et al., 2014) or as multi-ROI networks (Linden et al., 2012; Mehler et al., 2018). Although some 
studies using EEG-based neurofeedback claim to target some of these brain structures (e.g. as the dACC and the amygdala (Walker and 
Lawson, 2013)), we note that the relatively low spatial resolution and fidelity of EEG imposes substantial limitations and requires 
validation. The most common approach relies on recordings from frontal channels to measure potential asymmetries in the alpha 
frequency band (Choi et al., 2011; Hammond, 2005; Peeters et al., 2014; Ramirez et al., 2015; Wang et al., 2019; Wang et al., 2016). 
This approach assumes that the hyper- and hypoactivation of opposite hemispheres indicate the valence experienced during emotion 
regulation (Harmon-Jones et al., 2010) and that this marker may reflect symptoms of dysfunctional emotion regulation as commonly 
observed in depressed patients (Thibodeau et al., 2006). Of interest, neurofeedback protocols that use simultaneous EEG-fMRI 
recordings showed that EEG frontal asymmetry was correlated with activity in brain structures involved in emotion regulation in healthy 
subjects (Zotev et al., 2013) and patients suffering from depression (Zotev et al., 2019; Zotev et al., 2016). However, the relationship 
between these biological markers and the cognitive mechanisms for depression is still debatable. In this context, neurofeedback protocols 
may provide additional validation of these mechanisms (Linden, 2014).  

Apart from targeting neural correlates of MDD, neurofeedback training paradigms have also been designed to tap into the 
interaction between psychological and biological aspects of the disorder (Deldin and Chiu, 2005). For instance, some neurofeedback 
protocols incorporate aspects from cognitive therapy such as cognitive restructuring approaches and means of emotional self-regulation, 
including training to self-regulate the response for valenced figures, autobiographical memories, or affective imagery (MacDuffie et al., 
2018; Skottnik and Linden, 2019). Thereby, mental imagery based neurofeedback training can potentially aid patients in developing 
coping strategies to mitigate negative thoughts and value positive experiences (Clark and Beck, 2011). Further, the task engagement 
itself in combination with contingent positive reinforcement during a neurofeedback session may result in behavioral activation and 
modulate self-efficacy (Dimidjian et al., 2011), i.e. an individual’s sense of being in control of their environment and to cope with 
challenges (Bandura, 1982; Mehler et al., 2018). Moreover, such psychophysiological effects are particularly relevant for the treatment 
of depressed patients (but also other psychiatric patient populations) who often show deficits in these capacities. Of interest, it has been 
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noted that psychotherapy approaches and neurofeedback strategies may be mutually translatable (MacDuffie et al., 2018; Skottnik and 
Linden, 2019). As such, neurofeedback training may provide a promising add-on tool to augment standard care treatment, supporting 
patients in the process of cognitive restructuring and other learning processes initiated in psychotherapeutic sessions.  

 
1.4. Aim of this review 

 
Given the growing number of studies investigating neurofeedback applications as a treatment for MDD over the last decades, we aim 
here to (I) summarize and compare current findings, (II) evaluate the quality of these studies, and (III) provide guidelines for future 
research that can accelerate the field. Different from previous reviews (Linden, 2014; Sacchet and Gotlib, 2016; Young et al., 2018b), 
we note that the present study comprises to our knowledge the first attempt of a systematic investigation of EEG and fMRI neurofeedback 
training protocols in MDD patients. Also, to assess study design and reporting quality, we employed the Joanna Briggs Institute (JBI) 
critical appraisal tools (Tufanaru et al., 2017) and “Consensus on the Reporting and Experimental Design of Neurofeedback studies” 
(CRED-nf) checklist (Ros et al., 2020). 

 
2. Methods 

 
2.1 Systematic search 
 
A systematic search on English peer-reviewed journal articles published until March 6th, 2020, was performed for this review. The 
PubMed bibliographic database, and pre-print servers including life science papers (arXiv, medRxiv, psyArXiv, and bioRxiv) were 
queried using the following search rule:  

(biofeedback OR neurofeedback) AND (depression OR depressive) 
Resulting articles were selected or rejected based on the criteria described in Table 1. 
 

Table 1 - Eligibility criteria. 

Inclusion criteria: 

1) Studies presenting original results in human adults (> 18 years 
old) 

2) Studies including patients with a formally diagnosed current 
depressive episode 

Exclusion criteria: 

1) Studies including patients with other psychiatric disorders (but 
not major depressive disorder) in the experimental sample, or 
targeting depressive symptoms in other disorders 
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2) Studies exclusively evaluating healthy participants 

3) Studies applying biofeedback based only on non-neural signals 

4) Studies without voluntary control of brain activity 

5) Studies with animal models 

6) Case reports (n<5), reviews, commentaries, or editorials 

 
As shown in Figure 1, a total of 577 journal articles were found in the PubMed and pre-print databases, and eight other papers 

were included from other sources (papers cited in articles screened) (the list of articles is available on: https://osf.io/k76g2/). Through 
relevance screening, 539 articles were rejected as they did not meet the inclusion criteria. After full-text examination, only 24 articles 
were included in this systematic review.  

 To collect relevant information, a data extraction sheet was created including 23 data items which were extracted and grouped 
into four categories: Study Design (diagnostic criteria, symptom scales, existing comorbidities, parallel treatments, randomization, 
blinding, experimental paradigm, control paradigm, feedback modality, number of sessions, and follow-up), Clinical Outcomes (within 
group differences post-NF, between groups differences post-NF, within group differences at follow-up, between groups at follow-up, 
exclusions and drop-outs), Other Significant Outcomes (within group differences post-NF, between groups differences post-NF, within 
group differences at follow-up, between groups at follow-up). One co-author (LRT extracted data from studies and another co-author 
screened the extraction results (SHK). Disagreements between the reviewing authors were resolved by discussion. 
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Figure 1 - Search decision flow diagram according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (Moher et al., 2009).  

 

 
2.2 Assessment of clinical efficacy 
 
When evaluating clinical outcomes between studies, three other design aspects (besides differences in the experimental paradigm) make 
it difficult to compare clinical effects as reported across studies: (1) Studies vary greatly in their control conditions, ranging from no 
control or passive control conditions, where patients merely engage in training mental coping strategies, to active neurofeedback control 
conditions that are closely matched for various psychosocial factors including reward, successful self-regulation experience, regular 
interactions with practitioners/researchers and practicing mental coping strategies (Thibault et al., 2018). (2) Studies vary in their 
inclusion criteria, which may also pertain to baseline severity levels of depressive symptoms. For established treatments in depression, 
it is well known that baseline differences account for part of the variance of clinical improvements and superiority of treatment over 
non-specific psychosocial effects (Fournier et al., 2010; Kirsch et al., 2008) and hence differences in baseline severity may bias results. 
(3) Studies used different outcome measures (i.e., numerical scales). While calculating standardized effect sizes can account for 
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differences in used outcome measure (see 3), they do not account for differences in baseline severity (see 2). To address the first aspect 
(heterogeneity in control conditions), we grouped studies into one of four categories: no control, passive control, active control outside 
the scanner, or active control inside the scanner. To address the second and third aspect (i.e., potential baseline differences and 
heterogeneity in clinical scales), we normalized clinical percentage changes reported for individual studies by the maximum score of 
the respective clinical scale that was being used (Figure 2A). Symptom improvement scores were computed as the percentage change 
of the primary outcome measure with respect to baseline. For studies that did not declare their primary outcome (Choi et al., 2011; 
Hammond, 2005; Paquette et al., 2009; Peeters et al., 2014; Ramirez et al., 2015; Walker and Lawson, 2013; Wang et al., 2016; Yuan 
et al., 2014), we considered all clinical outcome measures (if multiple were reported) as secondary and adopted a conservative approach 
selecting the symptom scale with the least percentage change. 

Lastly, to compare clinical effects between neurofeedback and other interventions, we computed the number needed to treat 
(NNT) for studies reporting remission rates. Specifically, following Altman’s recommendation, we refer here to the “number needed to 
treat for one additional patient to benefit, or to be harmed” (i.e., worsening of depressive symptoms), i.e. NNTB and NNTH, respectively 
(Altman, 1998), and report these point estimates alongside their 95% confidence intervals using the Wilson score method. In contrast to 
the widely used Wald method, the Wilson score method is expected to yield less biased results for studies with relatively small sample 
sizes or unbalanced designs (Bender, 2001; Newcombe, 1998) and thus seemed more appropriate for the current sample. Calculations 
were performed modifying a custom written script originally created by Bender (Bender, 2001) using the statistical software “Statistical 
Analysis System” (SAS, version 9.4). The SAS script that also includes the extracted data for reported remission rates is available: 
https://osf.io/jw7mu/. 
 
2.3 Assessment of experimental design and reporting quality 
 
To enhance reporting standards in the neurofeedback field, the recently published “Consensus on the Reporting and Experimental Design 
of Neurofeedback studies” (CRED-nf) checklist suggests “essential” and “suggested” items around design and reporting aspects, 
including pre-experiment registration, control groups and measures, feedback specifications, outcome description and data 
storage/publishing (Ros et al., 2020). Two of the coauthors (LRT and SHK) independently rated the studies included in this review 
according to the 23 criteria of the CRED-nf checklist. Disagreements between the reviewing coauthors were resolved by discussion.  

Moreover, we also assessed the methodological quality of included studies based on the checklist for quasi-experimental studies 
of the Joanna Briggs Institute (JBI) critical appraisal tools (Tufanaru et al., 2017). The JBI checklist has been used in various 
experimental fields and thus allows comparing standards between neurofeedback studies but also entire fields. The JBI checklist includes 
items such as clarity of cause and effect, similar participants, similar treatment in compared groups, existence of a control 
group/condition, multiple measurement points of the outcome, completion of follow-up, similar outcome measurements in compared 
groups, reliability of outcome measurements, appropriate statistical methods. The same coauthors who rated studies according to the 
CRED-nf evaluated the studies included in this review according to the nine criteria of the JBI checklist. Similar to Kohl et al. (Kohl et 
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al., 2020) we adapted some of the CRED-nf items to account for the fact that most studies were published before these guidelines (see 
Supplementary Material for details).  
 
2.4. Contacting authors 
 
The data extraction sheets, JBI and CRED-nf score tables, and a preprint version of the manuscript were shared with all corresponding 
authors of the included studies to ask for corrections. Five of 16 (~31%) corresponding authors replied to our enquiry and either approved 
the data extraction or suggested minor corrections.  
 
3. Results 
 
Thirteen of the 24 studies included in this review used EEG neurofeedback protocols: six studies including only frontal channel (targeting 
the structures from the frontal cortex); four studies combining frontal channels with other portions of the scalp; and three studies looking 
at regions other than the PFC. The remaining eleven studies applied real-time fMRI neurofeedback protocols: six studies targeting the 
amygdala exclusively; three studies targeting different networks (two studies including emotion processing network, one the salience 
network); and two studies with two or more distinct regions. Following this review's first aim, and given the heterogeneity of protocols, 
we first provide a detailed overview of the various experimental protocols used for EEG (Section 3.1) and fMRI (Section 3.2) 
neurofeedback studies, respectively. In these sections, we emphasize on study designs and training paradigms (Table 2), clinical 
outcomes at primary endpoint and at follow-up (if reported; Table 3) as well as other statistically significant cognitive or neural effects 
(if evaluated; Table 4). As far as reported by the authors of the original studies, we also extracted information about co-occurring 
standard treatment for depression, including psychopharmacological medicine (patients are referred to as medicated) and psychotherapy.  

We follow with an investigation of clinical effects grouped by control condition (Section 3.3) as well as drop-out rates and side-
effects (if reported; Section 3.4). Specifically, we compared baseline scores and changes of the primary outcome measure (or if not 
declared, we used the secondary outcome measure with the least improvement; Figure 2) to evaluate clinical efficacy. We further 
explored the relationship between the number of neurofeedback training sessions and clinical improvement (Figure 3), and computed 
the number needed to treat for one additional patient to benefit (or to be harmed) [NNTB/NNTH] (Altman, 1998) for studies that declared 
a primary outcome measure and reported remission rates (Table 5).  

Lastly, following this review's second aim, we report quality scores for study design and reporting (Figure 4) and discuss these 
findings in the context of best practice recommendations (Section 3.5).  
 
3.1. EEG neurofeedback paradigms and clinical effects 
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In the first controlled, non-blinded pilot EEG neurofeedback study in MDD, Schneider et al. (1992) compared the ability of medicated 
patients (N=8) and healthy controls (N=8) to regulate slow cortical potentials (SCP) at the central electrode (Cz). The patient group 
showed significantly higher control of the system, and the authors reported a negative correlation between on-task SCP and the onset of 
illness, and a correlation in the opposite direction between SCP and the number of hospitalizations pre training (Schneider et al., 1992). 
However, no clinical changes after the neurofeedback training were reported by the authors. 

Later, neurofeedback researchers became interested in protocols that exploited spectral lateralization observed in frontal 
electrodes in response to mood induction (Harmon-Jones et al., 2010; Palmiero and Piccardi, 2017). Four neurofeedback studies reported 
frontal alpha asymmetry as the main feature. Alpha asymmetry is calculated as the difference in the alpha spectral power between left 
and right frontal channels F3 and F4. The first randomized, controlled and non-blinded study that used this approach in non-medicated 
patients compared changes in (self-rated and clinician-rated) depression scales between a group that engaged in EEG frontal alpha 
asymmetry neurofeedback training (N=12) and a control group that received psychoeducation (N=11) (Choi et al., 2011). After 10 
training sessions, the neurofeedback group showed a significant improvement of the depressive symptoms (reduction of more than 60% 
for the HDRS-17 and BDI-II scores), which persisted in the neurofeedback group at one-month follow-up (no follow-up reported for 
the control group). However, one main limitation of the study was the lack of blinding and the fact that patients were already partly 
remitted at enrolment (five in the experimental and two in the control group). Another research group later employed an uncontrolled, 
single-arm study with nine patients (medication status unclear) suffering from moderate to severe depression who underwent a similar 
training for a maximum of 30 sessions (three per week) (Peeters et al., 2014). Partial (defined as at least 50% reduction) and total 
remission (a score of ≤ 6) were reported for four and one patient based on self-rated depression scale (QIDS-SR16). Moreover, this study 
reported a significant correlation between symptom improvement and the normalization of the frontal alpha balance.  

A similar alpha asymmetry EEG training protocol was tested later by Wang et al. (2016) in a randomized non-blinded controlled 
pilot study with medicated patients. However, the authors found no significant difference between patients performing neurofeedback 
(N=7) and those undergoing psychoeducation (N=7). Later, the same research group expanded this design by another control group and 
recruited additional patients. Specifically, they compared in a non-randomized, non-blinded two-arm follow-up study the efficacy of 
alpha asymmetry neurofeedback (N=24) and beta parietal asymmetry neurofeedback training (N=23) in medicated patients. Wang et al. 
(2019) found that both groups showed significant improvement in depressive (more than 10%) and anxiety related (around 9%) 
symptoms. When compared to a control group receiving placebo therapy (N=23), the alpha neurofeedback showed significant 
improvement of anxiety symptoms, while the beta neurofeedback showed a significant effect of depressive symptoms (Wang et al., 
2019). Exploratory post-hoc analyses suggested that changes in depressive symptoms (BDI scale) were positively correlated with the 
beta variation in left and right parietal electrodes P3 and P4 (Chen and Lin, 2020). 

Two independent studies followed a different approach combining the frontal alpha asymmetry with other EEG features: in an 
uncontrolled, non-blinded single-arm pilot study, Hammond (2005) combined beta up-regulation with alpha and theta down-regulation 
over left and right frontal electrode channels F3 and F4 in a small sample (N=8). Seven patients showed improvement in the Minnesota 
Multiphasic Personality Inventory (MMPI) scale (with an average reduction of about 30%). Of interest, these improvements in 
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depressive symptoms were largely maintained at follow-up one year later (Hammond, 2005). Another uncontrolled, unblinded single-
arm pilot study explored the up-regulation of alpha and beta ratios in frontal channels (AF3, AF4, F3 and F4) during increased arousal 
and valence in depressed elderly patients (N=6) (Ramirez et al., 2015). After ten training sessions, patients presented approximately 
17% improvement of self-rated BDI scores. We note that both studies did not provide detailed information about other concomitant 
treatment (Table 2).  

Walker and Lawson (2013) used a different approach to measure lateralization in an uncontrolled single-arm study at a non-
academic institution (a commercial EEG neurofeedback clinic). They enrolled 183 MDD patients that showed no sufficient improvement 
after previous psychopharmacological treatment (i.e., were considered treatment resistant). This sample constitutes the largest thus far 
collected in the depression neurofeedback literature. However, overall, the report and documentation were very brief, no further 
information about patients (e.g., forms of compensation) was reported and a potential conflict of interest was not declared. Patients were 
trained to reduce spectral power in theta and increase spectral power in beta frequencies at the right frontopolar channel (FP2) during 
six training sessions. The underlying assumption of this training protocol was that modulations of these frequencies in the intended 
direction would mimic effects of deep brain stimulation in Brodmann area 25 and entrain inhibitory effects on the amygdala non-
invasively (Walker and Lawson, 2013). However, no source localization analysis was performed. This intervention led to significant 
reductions of self-reported symptoms for more than 80% of patients (group average showed a reduction of approximately 44%) (Walker 
and Lawson, 2013). 

Moving to other areas of the scalp, three studies combined data from frontal channels and temporal and posterior channels in 
their protocols. The uncontrolled single-arm study by Paquette et al. (2009) focused on the reduction of high-beta power in fronto-
temporal channels (AF3, AF4, T3 and T4) while inhibiting negative thoughts. After 20 sessions, medicated patients (N=27) presented 
an approximately 73% reduction of BDI symptoms. Further, 20 patients did not meet the DSM-IV criteria for MDD anymore. One 
month after the end of the treatment, source localization analysis found reduced beta frequencies in emotion-related brain areas including 
the orbitofrontal cortex, temporal lobe, amygdala and cingulate cortex (Paquette et al., 2009). Further, Escolano et al. (2014) performed 
a non-randomized non-blinded trial in medicated patients, comparing an experimental group (N=40) that underwent alpha power 
upregulation training over parieto-occipital channels (performing mental arithmetic) with a control group that received continued 
standard care (N=20) in which patients received only their prescribed psychopharmacological medication. Behavioral outcomes 
suggested that the intervention group showed increased alpha EEG power and improved cognitive symptoms (working memory) 
(Escolano et al., 2014). However, the study did not report any changes of clinical changes despite assessing these at baseline.  

In an uncontrolled single-arm study, Cheon et al. (2016) included an experimental group (N=20) of medicated patients that 
trained to up-regulate beta power at F3 and down-regulate the alpha/theta ratio in the Pz electrode. After 16 to 24 sessions, patients 
presented approximately 70% of reduction in both the Hamilton Depression Rating Scale (HDRS) and the Hamilton Anxiety Rating 
Scale (HARS). Later, the same research group adapted the same approach to subject-dependent protocols that were calibrated based on 
patients’ symptoms and could include the self-regulation of sensorimotor rhythms or beta band in the electrodes F3, T3, or T4, followed 
by down-regulation of the alpha/theta ratio in the Pz electrode (Lee et al., 2019). The choice of the best protocol was based on a previous 
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study evaluating the efficacy of different protocols to reduce specific symptoms (for example, low attention, low self-esteem, high 
depression, or high anxiety) across different psychiatric disorders (Cheon et al., 2015). The study was non-randomized and not blinded. 
All patients continued pharmacological medication treatment during the course of the study. While the experimental group (N=12) 
received neurofeedback training as augmentation, the control group (N=12) received supportive psychotherapy. Results suggested that 
patients in the experimental group showed significantly more clinical improvements with about 60% reduction in the primary clinical 
outcome after 12 to 24 sessions, while patients in the control group improved only by about 10%. Lastly, we note that some studies were 
not included in our primary analyses due to inclusion and exclusion criteria (Table 1); they are briefly summarized in the Supplementary 
Material.   
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Table 2 – Overview of experimental designs of studies using neurofeedback protocols in depressive patients (additional clinical details are provided in Table S1 
in the Supplementary Material). ↑ = upregulation; ↓ = downregulation; N = sample size; E = Experimental group; C = Control Group; NR = Not Reported; 
Studies with overlapping samples are highlighted in gray. 
Abbreviations: BAI = Beck Anxiety Inventory; BDI = Beck Depression Inventory; BPRS = Brief Psychiatric Rating Scale; CGI = Clinical Global Impression; 
DSM = Diagnostic and Statistical Manual of Mental Disorders; DSRT = Depression Self-Rated Test; GAS = Global Assessment Scale; HDRS = Hamilton 
Depression Rating Scale; HARS = Hamilton Anxiety Rating Scale; MADRS = Montgomery-Asberg Depression Rating Scale; MMPI = Minnesota Multiphasic 
Personality Inventory; PHQ = Patient Health Questionnaire-Depression; QIDS-SR16 = Quick Inventory of Depressive Symptoms - Self-Report Version; STAI = 
State/Trait Anxiety Scale; Psychopharm. Medication = Psychopharmacological Medication; Clinical/psychometric outcome measures reported as baseline mean 
± standard-deviation.  
 

Study 

Training target in 
Experimental Group 

(N of allocated 
subjects / final 

sample) 

Control Condition 
(N of allocated 
subjects / final 

sample) 
Diagnostic 

criteria  

Comorbidity 
(see details 

in Table S1) 

Clinical and psychometric 
outcome measures (baseline 

levels) 

Co-occurring 
Treatment 

(NF/controls) 
Random
ization Blinding 

Number of 
NF 

sessions 

Follow up 
(in weeks 

with 
reference 

to the 
primary 

endpoint) 

Feedback 

EEG 

Schneider et 
al. (1992) 

↑ or ↓ slow cortical 
potentials in Cz  

(Ninit=8 / 
Nfinal=8) 

Healthy controls ↑ or ↓ 
slow cortical 

potentials in Cz  
(Ninit=8 / 
Nfinal=8) 

DSM-III-R NR 
HDRS-17 (NF: 21.3±4.74) 

GAS (NF: 40.1±7.95) 
BPRS (NF: 46.5±6.72) 

Psychopharm. 
Medication (8/0) 

Psychotherapy (NR) 
No No 

20 (NF) 
5 (controls) 

No 
Continuous  

and  
visual 

Hammond 
(2005) 

↑ beta and ↓ alpha and 
theta in Fp1 and F3  

(Ninit=9 / 
Nfinal=8) 

No MMPI NR MMPI (NF: 95.75±NR) 
Psychopharm. 

Medication (Yes-NR) 
Psychotherapy (0) 

No No 
20.75 

(average) 
Yes (48 - 
average) 

Non-specified 

Paquette et al. 
(2009) 

↓ beta in AF3, AF4, 
T3 and T4 while ↓ 
negative thoughts  

(Ninit=30 / 
Nfinal=27) 

No DSM-IV Yes 
BDI-II (NF: 37.3±9.0) 
BAI (NF: 18.5±0.3) 

Psychopharm. 
Medication (Yes-NR) 
Psychotherapy (NR) 

No No 20 Yes (4) 
Continuous  

and  
visual 

Choi et al. 
(2011)  

↑ alpha asymmetry in 
F3 and F4  
(Ninit=12 / 
Nfinal=12) 

Psychoeducation  
(Ninit=12 / 
Nfinal=11) 

DSM-IV No 

HDRS-17 (NF: 11.33±7.52; 
C: 12.36±7.67) 

BDI-II (NF: 22.75±12.35; C: 
26.18±16.21)  

MMPI-2 (NF: 62.08±12.61; 
C: 67.00±16.07) 

Psychopharm. 
Medication (0/NR) 
Psychotherapy (1/1) 

Yes No 10 Yes (4) 
Continuous  

and  
audiovisual 

Walker and 
Lawson 
(2013)  

↓ alpha and ↑ beta in 
Fp2 

(Ninit=183 / 
Nfinal=183) 

No 
QIDS-
SR16 

DSRT 
No QIDS-SR16 (NF: 11.8±5.0) 

Psychopharm. 
Medication (0) 

Psychotherapy (NR) 
No No 6 Yes (48) 

Frequency 
non-specified  

and  
auditory 

Peeters et al. 
(2014) 

↑ alpha asymmetry in 
F3 and F4  
(Ninit=9 / 
Nfinal=9) 

No DSM-IV Yes QIDS-SR16 (NF: 18.4±7.2) 
Psychopharm. 

Medication (Yes-NR) 
Psychotherapy (NR) 

No No 
26.78 

(average) 
No 

Continuous 
and  

visual 
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Escolano et al. 
(2014) 

↑ upper alpha band in 
parieto-occipital 

channels (Ninit=50 / 
Nfinal=40) 

Standard care 
(continued 

pharmacological 
treatment)  
(Ninit=24 / 
Nfinal=20) 

DSM-IV Yes 

BDI-II (NF: 23.70±13.51; C: 
22.25±11.74) 

PHQ-9 (NF: 13.33±6.84; C: 
15.65±5.96) 

Psychopharm. 
Medication (37/18) 
Psychotherapy (NR) 

No No 8 No 
Continuous  

and  
visual 

Ramirez et al. 
(2015) 

↑ alpha and beta 
rations in channels 

AF3, AF4, F3 and F4 
during ↑ arousal and 

valence  
(Ninit=10 / 
Nfinal=6) 

No 
Non-

specified 
NR BDI (NF: 15.5±9.90) 

Psychopharm. 
Medication (NR) 
Psychotherapy (0) 

No No 10 No 

Continuous  
and  

auditory 
(music) 

Cheon et al. 
(2016) 

↑ beta at F3 and ↓ 
alpha/theta ration in 

Pz 
(Ninit=20 / 
Nfinal=20) 

No 
DSM-IV-

TR 
No 

HDRS-23 (NF: 21.38±5.82) 
HARS (NF: 19.43±8.70) 
BDI-II (NF: 25.25±7.91) 
BAI (NF: 19.75±12.76) 

CGI (NF: 3.79±1.30) 

Psychopharm. 
Medication (12) 

Psychotherapy (NR) 
No No 16 to 24 No 

Frequency 
non-specified 

and  
audiovisual  

Wang et al. 
(2016) 

↑ alpha asymmetry in 
F3 and F4  
(Ninit=7 / 
Nfinal=7) 

Standard care 
(continued 

pharmacological 
treatment) 
(Ninit=7 / 
Nfinal=7) 

DSM-V No 

BDI-II (NF: 30.14±10.25; C: 
22.86±13.03) 

BAI (NF: 17.86±10.51; C: 
16.00±9.92) 

Psychopharm. 
Medication (6/6) 

Psychotherapy (0/0) 
Yes No 6 No Non-specified  

Lee et al. 
(2019) 

Self-regulate SMR or 
beta band in F3, T3, or 

T4 (according to 
symptoms), followed 
by ↓ alpha/theta ration 

in Pz  
(Ninit=12 / 
Nfinal=12) 

Standard care 
(continued 

pharmacological 
treatment) and placebo 

psychotherapy 
(supportive 

psychotherapy)  
(Ninit=12 / 
Nfinal=12) 

DSM-IV-
TR 

No 

HDRS-17 (NF:24.33±5.77; 
C:23.17±5.42) 

BDI-II (NF: 36.67±14.79; C: 
25.83±7.99) 

CGI-S (NF: 4.75±0.62; C: 
4.17±0.83) 

Psychopharm. 
Medication (12/12) 
Psychoterphy (NR) 

No No 12 to 24 No 

Frequency 
non-specified 

and 
audiovisual 

Wang et al. 
(2019) 

↑ alpha asymmetry in 
F3 and F4  
(Ninit=30 / 
Nfinal=24),  

or ↓ beta in P3 and P4  
(Ninit=26 / 
Nfinal=23) 

Standard care 
(continued 

pharmacological 
medication)  
(Ninit=31 / 
Nfinal=23) 

DSM-IV  

Yes 

BDI-II (NFa: 30.25+-8.39; 
NFb: 29.17+-11.47; C: 

30.44+-9.31 
BAI (NFa: 21.33+-12.22; 

NFb: 21.52+-9.62; C: 22.04+-
10.32) 

Psychopharm. 
Medication (47/23) 
Psychoterphy (NR) 

No  No  10  No  

Continuous 
and 

audiovisual  
Chen and Lin 

(2020) 
(sample 
partially 

overlapped 
with Wang et 

al. (2019)) 

↓ beta in P3 and P4 
(Ninit=26 / 
Nfinal=23) 

No Yes 
See “NFb” values in Wang et 

al. (2019) 

Psychopharm. 
Medication (23) 

Psychotherapy (NR) 

fMRI 
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Linden et al. 
(2012) 

↑ areas involved in 
positive emotions 

during mental imagery 
of positive emotions  

(Ninit=8 / 
Nfinal=8) 

Patients performing 
mental imagery of 
positive emotions 

outside the scanner  
(Ninit=8 / 
Nfinal=8) 

DSM-IV No 

HDRS-17 (NF: 14.38±NR; C: 
13.88±NR) 

HDRS-21 (NF: 18.12±NR; C: 
17.75±NR) 

Psychopharm. 
Medication (8/8) 

Psychotherapy (NR)  
No No 4 No 

Continuous  
and  

visual 

Young et al. 
(2014) 

(samples 
partially 

overlapped 
with Yuan et 
al. (2014)) 

↑ of amygdala during 
affective memory 

recall  
(Ninit=14 / 
Nfinal=13) 

Patients receiving 
feedback from non-

related control region  
(Ninit=7 / 
Nfinal=6) 

DSM-IV-
TR 

Yes 

HDRS-21 (NF: 19.9±5.15; C: 
23.9±5.49) 

MADRS (NF: 27.1±6.69; C: 
31.4±6.71) 

HARS (NF: 19.1±5.32; C: 
23.3±7.74) 

STAI Psychopharm. 
Medication (0/0) 

Psychotherapy (NR)  

No  

Yes 
(double-
blind)  

1  

No 

Continuous  
and  

visual  

Yuan et al. 
(2014) 

↑ of amygdala during 
affective memory 

recall  
(Ninit=14 / 
Nfinal=14) 

Patients receiving 
feedback from non-

related control region  
(Ninit=13 / 
Nfinal=13),  

and healthy subjects  
(Ninit=27 / 
Nfinal=27) 

Yes 

HDRS-21 (NF: 20.64±4.63; 
C: 23.69±4.96; H: 

23.69±4.96) 
HARS (NF: 19.93±5.15; C: 
22.15±7.02; H: 1.31±2.02) 

MADRS 

Yes (0.3 to 
4) 

Zotev et al. 
(2016) 

(samples 
partially 

overlapped 
with Yuan et 
al. (2014)) 

↑ of left amygdala 
during affective 
memory recall  

(Ninit=14 / 
Nfinal=13) 

Patients receiving 
feedback from non-

related control region  
(Ninit=13 / 
Nfinal=11) 

Yes 

HDRS-21 (NF: 20.5±4.0; C: 
20.9±3.3) 

MADRS (NF: 27.4±6.8; C: 
28.5±3.0) 

HARS (NF: 17.5±4.7; C: 
19.3±5.2) 

STAI 

Not clear (new 
session in addition to 
the one reported by 
Young et al. (2014)) 

Not clear 
(new 

session in 
addition 

to the one 
reported 

by 
Young et 

al. 
(2014)) 

2 No 

Hamilton et 
al. (2016) 

↓ reactivity of a node 
of the salience 

network 
(Ninit=12 / 
Nfinal=10) 

Patients receiving 
yoked feedback from 

NF group  
(Ninit=10 / 
Nfinal=10) 

DSM-IV Yes  
BDI-II (NF: 33.3±2.3; C: 

34.6±4.0) 

Psychopharm. 
Medication (6/4) 

Psychotherapy (NR)  
No 

Yes 
(double-
blind) 

1 No 
Visual at the 

end of the trial 

Young et al. 
(2017b) 

↑ of amygdala during 
affective memory 

recall  
(Ninit=19 / 
Nfinal=18)  

Patients receiving 
feedback from non-

related control region  
(Ninit=17 / 
Nfinal=15)  

DSM-IV-
TR  

Yes  

BDI-II (NF: 27.2±10.7; C: 
26.6±13.4) 

SHAPS 
MADRS (NF: 23.5±9.9; C: 

23.8±6.7) 
HDRS-21 (NF: 19.4±7.9; C: 

19.1±4.4) 
HARS (NF: 18.8±7.5; C: 

18.1±6.3)  

Psychopharm. 
Medication (0/0) 

Psychotherapy (NR) 
Yes  

Yes 
(double-
blind)  

  

2  Yes (1)  

Continuous  
and  

visual  

Young et al. 
(2017a) 
(samples 
partially 

overlapped 
with Young et 

al. (2017b)) 
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Young et al. 
(2018a) 
(samples 
partially 

overlapped 
with Young et 

al. (2017b)) 

Mehler et al. 
(2018) 

↑ of areas involved in 
positive emotions 

during mental imagery 
of positive emotions 

(Ninit=21 / 
Nfinal=16) 

Patients ↑ areas 
involved in scene 
processing during 
mental imagery of 

scenes  
(Ninit=22 / 
Nfinal=16) 

DSM-IV No 

HDRS-17 (NF: 19.88±-3.65; 
C: 19.09±5.09) 
HADS-A (NF:  

12.69±3.84; C: 12.63±4.13) 
HADS-D (NF:  

13.06±3.43; C: 12.44±4.35) 

Psychopharm. 
Medication (16/16) 
Psychotherapy (0/0) 

Yes 
Yes 

(single-
blind)  

5 Yes (6) 
Continuous  

and  
visual 

Jaeckle et al. 
(2019) 

↑ correlation between 
the right superior 

anterior 
temporal lobe and the 
posterior subgenual 

cortex during affective 
memory recall 

(Ninit=22 / 
Nfinal=19) 

Cognitive reappraisal 
techniques outside the 

scanner 
(Ninit=21 / 
Nfinal=16) 

DSM-V Yes 

BDI-II (29.14±8.66)^ 
MADRS (22.84±6.97)^ 

QIDS-SR16 (16.79±6.53)^ 
^no details per group reported 

Psychopharm. 
Medication (10/10) 
Psychotherapy (0/0) 

Yes 
Yes 

(single-
blind)  

3 No 
Continuous  

and  
visual 

Zotev et al. 
(2019) 

↑ of fMRI (left ACC 
and Amygdala) and 
EEG (alpha and beta 
asymmetry in F3 and 
F4) during affective 

memory recall  
(Ninit=16 / 
Nfinal=16) 

Patients receiving 
feedback unrelated to 

brain activity 
(artificially generated 

signals) 
(Ninit=8 / 
Nfinal=8) 

DSM-IV-
TR 

NR 

HDRS-21 (NF: 14.4±7.0; C: 
15.1±4.9) 

MADRS (NF: 19.6±10.7; C: 
20.5±5.7) 

HARS (NF: 13.2±7.5; C: 
16.1±6.4) 

STAI (NF: 56.9±9.9; C: 
59.6±9.6) 

Psychopharm. 
Medication (0/0) 

Psychotherapy (NR) 
No 

Yes 
(single-
blind)  

1 No 
Continuous 
and visual 
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Table 3 – Overview of main clinical outcomes from studies using neurofeedback protocols in depressive patients. ↑ = increased; ↓ = reduced; * = statistically 
significant effect; 1 = differences between the post-experiment measurement in each group and the pre-experiment measurement in the merged sample. Studies 
with overlapping samples are highlighted in gray. The primary outcome (if declared) is highlighted in bold. 
Abbreviations: BAI = Beck Anxiety Inventory; BDI-II = Beck Depression Inventory - Version 2; CGI = Clinical Global Impression; HDRS = Hamilton 
Depression Rating Scale; HARS = Hamilton Anxiety Rating Scale; HADS-A = Hospital Anxiety and Depression  Scale (Anxiety Subscale); HADS-D = Hospital 
Anxiety and Depression  Scale (Depression Subscale); MADRS = Montgomery-Asberg Depression Rating Scale; MMPI = Minnesota Multiphasic Personality 
Inventory; QIDS-SR16 = Quick Inventory of Depressive Symptoms - Self-Report Version 

Studies 

Clinical Improvement 

Post-NF (compared to baseline) Follow up (compared to baseline) Drop-outs or 
exclusions 

(NF/C) Within groups Between groups Within groups Between groups 

EEG 

Schneider et al. (1992) Not reported Not reported Not applicable Not applicable Not reported 

Hammond (2005) 
NF:  

↓ MMPI-2 (30%) 
Time x group interaction* Not reported Not reported Unmotivated (1/0) 

Paquette et al. (2009) 
NF:  

↓ BDI-II (72.9%)* 
↓ BAI (58.9%)* 

Not applicable Not reported Not applicable Tiredness (3) 

Choi et al. (2011)  

NF:  
↓ HDRS-17 (64.0%)* 

↓ BDI-II (60.1%)* 
 

Controls:  
↓ HDRS-17 (10.4%) 
↓ BDI-II (18.75%) 

NF > Controls: 
↓ BDI-II* 

↓ HDRS-17* 
Not reported Not reported Logistics (0/1) 

Walker and Lawson (2013)  
NF:  

↓QIDS-SR16 (44.1%)* 
Not applicable 

NF:  
↓QIDS-SR16 (55.1%)* 

Not applicable Not reported 

Peeters et al. (2014) 
NF: 

↓ QIDS-SR16 (29.5%)* 
Not applicable Not applicable Not applicable Not reported 

Escolano et al. (2014) Not reported Not reported Not applicable Not applicable 

Inability to 
perform the 
cognitive 

assessments (4/1) 
Excessive noise 

(6/3) 

Ramirez et al. (2015) 
NF: 

↓ BDI (17.2%) 
Not applicable Not applicable Not applicable Illness (4) 

Cheon et al. (2016) 

NF: 
↓ HDRS-17 (70.9%)*  

↓ HARS (69.1%)* 
↓ BDI-II (42.0%)* 

↓ BAI (41.1%)* 
↓ CGI (49.1%)* 

Not applicable Not applicable Not applicable 

Adverse events of 
medication (1) 
Tiredness (1) 
Logistics (1) 

Lost to follow up 
(2) 
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Wang et al. (2016) 

NF: 
↓ BAI (21.74%) and BDI-II 

(18.18%) for responders 
↑ BAI (124.27%) and BDI-II 
(24.97%)* for non-responders 

 
Controls: 

↓ BAI (28.33%) and BDI-II 
(27.63% ) for responders 
↑ BAI (11.54%) for non-

responders 

No significant effects Not applicable Not applicable Not reported 

Lee et al. (2019) 

NF: 
↓ HDRS-17 (61.65%)* 

↓ BDI-II (53.64%)* 
↓ CGI (38.53%)* 

 
Controls: 

↓ HDRS-17 (10.06%)*  
↓ BDI-II (8.36%) 
↓ CGI (0.00%) 

NF>Controls: 
↓ HDRS-17* 

↓ BDI-II* 
↓ CGI* 

Not applicable Not applicable Not reported 

Wang et al. (2019) 

NFa: 
↓ BDI-II (34.45%)* 
↓ BAI (38.28%)* 

 
NFb: 

↓ BDI-II (38.88%)* 
↓ BAI (43.23%)* 

 
Controls: 

↓ BDI-II (8.74%) 
↓ BAI (-0.98%) 

NFa>Controls: 
Group x session interaction for 

BAI* 
 

NFb>Controls: 
Group x session interaction for 

BDI-II* 

Not applicable Not applicable 

Non-specified 
reason for 

dropping out after 
allocation (6/3/8) 

Chen and Lin (2020) 
(sample partially overlapped 

with Wang et al. (2019)) 
See Wang et al. (2019) See Wang et al. (2019) See Wang et al. (2019) See Wang et al. (2019) 

See Wang et al. 
(2019) 

fMRI  

Linden et al. (2012) 

NF:  
↓ HDRS-17 (28.7%)* 

 
Controls: 

↑ HDRS-17 (7.2%) 

Group x session interaction for 
HDRS17* 

Not applicable Not applicable Not reported 

Young et al. (2014) 
(samples partially 

overlapped with Yuan et al. 
(2014)) 

See Yuan et al. (2014) See Yuan et al. (2014) See Yuan et al. (2014) See Yuan et al. (2014) Tiredness (1/1) 
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Yuan et al. (2014) 

NF:  
↓ HDRS-21 (15.6%) 
↓ HARS (18.5%)* 

 
Controls (MDD): 

↓ HDRS-21 (11.7%) 
↓ HARS (18.7%)* 

Not reported Not reported Not reported 

Not clear (new 
control 

participants in 
addition to the 

sample reported 
by Young et al. 

(2014)) 

Zotev et al. (2016) 
(samples partially 

overlapped with Yuan et al. 
(2014)) 

See Yuan et al. (2014) See Yuan et al. (2014) See Yuan et al. (2014) See Yuan et al. (2014) 
See Yuan et al. 

(2014) 

Hamilton et al. (2016) Not reported Not reported Not applicable Not applicable No response (2/0) 

Young et al. (2017b) 

NF:  
↓ MADRS (38.7%)* 
↓ BDI-II (32.4%)* 

↓ HDRS-21 (34.0%)* 
↓ HARS (25.0%)* 

 
Controls: 

↓ MADRS (5.0%) 
↓ BDI-II (4.9%) 

↓ HDRS-21 (10.0%) 
↓ HARS (7.18%) 

NF >Controls:  
Group x session interaction for  

MADRS*,  
BDI-II* 

 and HDRS-21* 

NF:  
↓ MADRS (49.4%)*  
↓ BDI-II (40.8%)* 

↓ HDRS-21 (46.4%)* 
↓ HARS (34.6%)* 

 
Controls:  

↓ MADRS (8.0%)  
↓ BDI-II (8.6%) 

↓ HDRS-21 (9.9%) 
↓ HARS (23.2%)* 

NF > Controls:  
↓ MADRS* 
↓ BDI-II* 

↓ HDRS-21* 
↓ HARS 

Discomfort (1/1) 
Excessive noise 

(0/1) 

Young et al. (2017a) 
(samples partially 

overlapped with Young et al. 
(2017b)) 

See Young et al. (2017b) See Young et al. (2017b) See Young et al. (2017b) See Young et al. (2017b) 
See Young et al. 

(2017b) 

Young et al. (2018a) 
(samples partially 

overlapped with Young et al. 
(2017b)) 

See Young et al. (2017b) See Young et al. (2017b) See Young et al. (2017b) See Young et al. (2017b) 
See Young et al. 

(2017b) 

Mehler et al. (2018) 

NF: 
↓ HDRS-17 (42.0%)* 
↓ HADS-A (14.0%) 
↓ HADS-D (23%) 

 
Controls: 

↓ HDRS-17 (43.7%)* 
↓ HADS-A (25%) 
↓ HADS-D (31%) 

No significant Group x session 
interaction for HDRS-17  

NF: 
↓ HDRS-17 (48.5%)* 

↓ HADS-A (30%) 
↓ HADS-D (35%) 

 
Controls: 

↓ HDRS-17 (60.4)* 
↓ HADS-A (39%) 
↓ HADS-D (34%) 

No significant effects 

Personal reasons 
(4/6) 

Discomfort (1/0) 
Lost to follow up 

(3/1) 
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Jaeckle et al. (2019) 

NF: 
↓ BDI-II (46.2%)*1 

↓ MADRS (37.1%)*1 
↓ QIDS-SR16 (39.5%)*1 

 
Controls: 

↓ BDI-II (46.0%)*1 
↓ MADRS (31.9%)*1 
↓ QIDS-SR16 (35.2)*1 

No significant Group x session 
interaction for BDI-II  

Not applicable Not applicable 

Feeling unwell to 
continue (1/2) 
Logistics (1/2) 
Adverse effects 
(insomnia - 1/0) 
Worsening of 

symptoms (0/1) 

Zotev et al. (2019) Not reported Not reported Not applicable Not applicable Not reported 
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Table 4 – Overview of other significant outcomes from studies using neurofeedback protocols in depressive patients. ↑ = increased; ↓ = reduced; + = positive; - = 
negative. Studies with overlapping samples are highlighted in gray. 
Abbreviations: EQ-5D-5L = 5-level version of European Quality of Life Questionnaire 5-Dimensional Classification; BDI-II = Beck Depression Inventory -  
Version 2; HDRS = Hamilton Depression Rating Scale; HN-NN = happy/neutral - neutral/neutral faces; IAPS = International Affective Picture System; MADRS 
= Montgomery-Asberg Depression Rating Scale; PANAS-NA = Positive Affect Negative Affect Schedule - Negative Affect; POMS = Profile of Mood States; 
QIDS-SR16 = Quick Inventory of Depressive Symptoms - Self-Report Version; SN-NN = sad/neutral - neutral/neutral faces; SCP = slow cortical potentials; SDS 
= Sheehan Disability Scale; SHAPS = Snaith–Hamilton Pleasure Scale; SRET = self-referent encoding task; STAI = State/Trait Anxiety Scale; TAS = Toronto 
Alexithymia Scale; VAS = Visual Analog Scale. 

Studies 

Other significant outcomes 

Post-NF (compared to baseline) Follow up (compared to baseline) 

Within groups Between groups Within groups Between groups 

EEG 

Schneider et al. (1992) 

NF: 
- corr.: SCP control and onset of 

illness 
+ corr.: SCP control and number of 

hospitalizations 

NF > Controls: 
Control of SCP 

Not applicable Not applicable 

Hammond (2005) Not Reported Not applicable Not reported Not applicable 

Paquette et al. (2009) 

NF:  
↓ frequency of worries, frequency of 

negative automatic thoughts, 
frequency of rumination sadness, 

dysfunctional attitudes, behavioral 
inhibition 

↑ frequency of positive automatic 
thoughts 

Not applicable 

NF: 
↓ beta activity in orbitofrontal cortex, 
insula, amygdala, temporal pole and 

cingulate cortex 
+ corr. (uncorrected): ↓ BDI-II and ↓ 

beta activity in orbitofrontal and 
cingulate cortices 

Not applicable 

Choi et al. (2011)  

NF: 
↑ accuracy in the verbal fluency task 

↓ reaction time for congruent and 
incongruent stimuli in the Stroop task 

↑ of alpha asymmetry 
 

Controls: 
No significant effects 

Significant time x group interactions 

NF: 
Sustained clinical, physiological, and 

neuropsychological improvements 
(values not reported) 

Not reported 

Walker and Lawson 
(2013)  

Not reported Not applicable Not reported Not applicable 

Peeters et al. (2014) 
NF: 

- corr.: ↓ QIDS-SR16 and alpha 
asymmetry 

Not applicable Not applicable Not applicable 

Escolano et al. (2014) 

NF: 
↓ number of errors and reaction time 
↑ power in the working memory task 

No significant effects in alpha 
asymmetry 

 
Controls: 

No significant effect 

Group x time interaction for the working 
memory task 

Not applicable Not applicable 
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Ramirez et al. (2015) Not reported Not applicable Not applicable Not applicable 

Cheon et al. (2016) 
No significant effects in alpha 

asymmetry 
Not applicable Not applicable Not applicable 

Wang et al. (2016) No significant effects No significant effects Not applicable Not applicable 

Lee et al. (2019) 

NF: 
↑ EQ-5D-5L and ↓ SDS 

 
Controls: 

↓ EQ-5D-5L and ↑ SDS 

NF>Controls: 
↑ EQ-5D-5L 

 
Controls>NF: 

↑ SDS 

Not applicable Not applicable 

Wang et al. (2019) 

NFb: 
↓ P3 high-beta power 

 
Controls: 

↑ P3 high-beta power 

No significant effects Not applicable Not applicable 

Chen and Lin (2020) 
(sample partially 

overlapped with Wang 
et al. (2019)) 

NF: 
↓ beta, but not other bands, in P3 and 

P4 
+ corr. between ↓ BDI-II and ↓ beta in 

P3 and P4 

Not applicable Not applicable Not applicable 

fMRI 

Linden et al. (2012) 

NF:  
↓ POMS 

↑ bilateral ventral striatum and left 
extra-striate visual cortex activity 
+ corr.: up-regulation and HDRS 

 
Controls:  
↓ POMS 

Controls > NF: 
PANAS-NA 

Not applicable Not applicable 

Young et al. (2014) 
(samples partially 

overlapped with Yuan 
et al. (2014)) 

NF:  
↓ STAI trait and state anxiety 
↓ POMS-depression and anger 

↓ VAS restlessness, anxiety and 
irritability 

↑ VAS-happiness 
↑ left amygdala activity  

+ linear trend across all runs 
 

Controls:  
↓ VAS-sadness 

NF > Controls: 
VAS-happiness 

Amygdala activity 
 

'Controls > NF: 
STAI state anxiety 

Not applicable Not applicable 

Yuan et al. (2014) 
NF: 

- corr.: amygdala-cuneus connectivity 
and HDRS  

Controls (healthy) > NF and Controls 
(MDD):  

Amygdala-ACC and amygdala-cuneus 
connectivity before NF, but not after 

NF:  
+ corr.: amygdala-cuneus connectivity 

and the time to follow-up 
Not reported 
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Zotev et al. (2016) 
(samples partially 

overlapped with Yuan 
et al. (2014)) 

NF:  
↓ POMS depression, total mood 

disturbance 
↑ VAS happiness 

+ corr.: amygdala activity and self-
reported happiness, and memory-

recall, and VAS-happiness 
- correlation: amygdala activity and 

POMS-tension, and TAS-total 
+ corr.: amygdala laterality and TAS-

total 
+ corr.: EEG asymmetry and HDRS 

and SHAPS-anhedonia 
+ corr.: EEG asymmetry and 

amygdala laterality 

Not reported Not applicable Not applicable 

Hamilton et al. (2016) 

NF: 
↓ salience network node response 
↓ emotional reactivity to negative 

IAPS 
↓ in negative SRET 

 
Controls: 

No significant effects 

NF > Controls:  
Reduction in responses to IAPS negative 

pictures, and in negative SRET  

Not applicable Not applicable 

Young et al. (2017b) 

NF: 
↓ SHAPS 

↑ recall of positive specific and overall 
specific memories 

↓ recall of categorical positive, overall 
categorical, extended positive, 
extended negative, and overall 

extended memories 
+ corr.: MADRS and amygdala 

activity during the final transfer run 
 

Controls: 
No significant effects 

NF > Controls:  
Recall of specific extended memories, and 

positive specific memories 
 

Controls > NF:  
SHAPS 

Recall of categorical extended memories, 
and positive categorical and extended 

memories 

NF:  
↓ SHAPS* 

 
Controls: 

No significant effects 

No significant effects 

Young et al. (2017a) 
(samples partially 
overlapped with 

Young et al. (2017b)) 

Not reported Not reported 

NF:  
↓ amygdala activity during n response 

to sad faces 
↑ amygdala activity during n response 

to happy faces 
↓ reaction time for positive faces 
↓ reaction time for positive words  

↑ vigilance to positive faces  
↓ vigilance to negative faces 

 
Controls:  

No significant effects 

NF > Controls: 
Amygdala activity during HN-NN 

condition 
Vigilance to positive faces 

 
Controls > NF: 

Amygdala activity during SN-NN 
condition 

Reaction time for positive faces  
Reaction time for positive words  

Vigilance to negative faces 
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Young et al. (2018a) 
(samples partially 
overlapped with 

Young et al. (2017b)) 

Not reported 

NF > Controls:  
Amygdala connectivity with prefrontal 

cortical, striatal and subcortical 
regions during memory recall, and limbic 

regions at rest 
 

Controls > NF:  
Amygdala connectivity with right 

temporal lobe during positive memory 
recall, and bilateral temporal pole at rest 

Not reported Not reported 

Mehler et al. (2018) 

NF : 
 ↑ ROIs across sessions 

 
Controls: 

 ↑ ROIs across sessions 
 

Both groups: 
+ corr.: between HDRS-17 
improvement (corrected for 

confounds) and improvement in self-
efficacy scores 

No significant effects No significant effects No significant effects 

Jaeckle et al. (2019) 

NF: 
↓ connectivity between the right 

superior anterior 
temporal lobe and the posterior 

subgenual cortex 
 

Both groups: 
↓ POMS-depression dejection, 
Rosemberg self-esteem scale 

↓ self-blame ratings during anger 
content 

 ↑ self-esteem ratings 
- corr.: between differences in self-
esteem ratings and BDI reduction 

No significant effects Not applicable Not applicable 

Zotev et al. (2019) 

NF: 
↓ POMS depression, confusion, and 

total mood disturbance 
↑ VAS happiness 

↑ alpha and beta asymmetry, and left 
amygdala activity during NF 

↑ left amygdala-ACC connectivity 
+ corr. between alpha asymmetry and 

MADRS-trait depression, and 
SHAPS-anhedonia 

- corr. between alpha asymmetry and 
delta POMS-state depression and 

POMS-total mood disturbance 
 

NF > Controls: 
left amygdala-ACC connectivity 

Not applicable Not applicable 
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Controls: 
No significant effects 

 
  



 29 

 

3.2. fMRI neurofeedback paradigms and clinical effects 
 
fMRI-based neurofeedback protocols commonly employ tasks of emotional self-regulation and train patients to either up- or down-
regulating the BOLD signal in brain regions related to emotion processing, such as the amygdala, dorsal anterior cingulate cortex, 
prefrontal cortex, insular cortex, superior temporal gyrus, precentral gyrus, and middle temporal gyrus (Johnston et al., 2010; Linhartová 
et al., 2019).  

In a first proof-of-concept non-randomized, non-blinded study of fMRI neurofeedback in depression, Linden et al. (2012) 
compared two groups of eight medicated MDD patients. While the control group engaged in mere mental imagery training outside the 
scanner, the experimental group received four sessions of neurofeedback training, during which they used similar mental strategies to 
self-regulate the activity in brain areas responsive to affective visual stimulation. Specifically, to identify responsive ROIs for the 
algorithm, all volunteers were initially submitted to affectively charged figures with positive valence. Throughout the sessions, patients 
in the neurofeedback group learned to up-regulate the BOLD response of the targeted areas, including the ventrolateral and dorsolateral 
portions of the prefrontal cortex, insula, medial temporal lobe, and orbitofrontal cortex.  

Further, the neurofeedback group, but not the control group, presented a significantly larger improvement in depressive 
symptoms (approximately 28% of improvement and 7% of worsening, respectively) and two patients in the experimental but no patient 
in the control group were remitted at the primary endpoint (Linden et al., 2012). In a subsequent larger randomized single-blind 
controlled trial (N=16 per group) by Mehler et al. (2018), medicated patients were assigned to one of two neurofeedback training 
interventions: whereas the experimental group trained over five sessions to activate limbic areas using positive mental imagery (NFE) 
similar to patients in the neurofeedback group in Linden et al. (2012), the active control group trained over five sessions to activate 
higher visual areas imagined relaxing scenes (NFS). Training areas in the NFS control group included regions involved in scene 
processing, such as the parahippocampal place area and higher visual cortices (Mehler et al., 2018). Although the NFE group was 
expected to show superior clinical improvements, no statistically significant group difference was found at the primary endpoint or a 
follow up (6 weeks later). However, patients in both groups showed substantial reductions on the HDRS-17 (about 42% and 44% for 
the NFE and NFS group, respectively), which lasted and improved slightly further at follow-up six weeks later (about 48% and 59% for 
the NFE and NFS group, respectively).  

Moreover, about 38% (12/32) of patients were remitted (based on the HDRS-17 score) at the primary endpoint (with 4/16 
patients, i.e., 25% in the NFE, and 8/16, i.e., 50% in the NFS group, respectively). Potential reasons that may account for these findings 
include that both groups engaged in a potentially beneficial form of mental imagery. Further, post-experimental analyses showed that 
both groups presented overlapping active voxels in the anterior insula during the neurofeedback training. Of interest, a correlation 
between clinical improvement and a measure of self-efficacy was reported suggesting that the successful training experience may already 
provide clinical benefit to patients.  

Another set of six studies reported clinical results and exploratory analyses from two independently conducted neurofeedback 
experiments (Young et al., 2017b; Young et al., 2014) in which participants trained self-regulation of amygdala activity. In the first 
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study by Young and colleagues (Young et al., 2014), unmedicated MDD patients enrolled in a non-randomized single-blinded, sham-
controlled experiment, unmedicated MDD patients trained to self-regulate the amygdala using positive autobiographical memories 
(N=13) in an experiment in which the control group (N=6) received feedback from a brain area (the intraparietal sulcus) that was not 
associated with the mental task (Young et al., 2014). After a single session, the first group achieved effective control of the amygdala 
responsiveness. Psychometric testing suggested a reduction of anxiety indexes and increased happiness indexes (Young et al., 2014), 
but results for clinical effects were not reported albeit the HDRS-21 was assessed at baseline.  

In a follow-up study the same research group included this initial data set and tested a few more patients in the patient control 
group (new N=13 patients) as well as an additional control group of healthy participants (N=27) (Yuan et al., 2014). Their results 
suggested slight decreases on the HDRS-21 in all groups (about 16% of improvement for the experimental group, and 12% for the 
patient control group) but no significant group difference. Of interest, post-hoc analyses indicated increased resting-state functional 
connectivity between the left amygdala and the left pregenual anterior cingulate cortex (pgACC), and between amygdala and the left 
cuneus in both groups following neurofeedback training (Yuan et al., 2014). Finally, upregulation of the left amygdala BOLD activity 
during a new (second) session of the same protocol was accompanied by positive average changes in frontal alpha EEG asymmetry, 
which significantly correlated with the MDD patients’ trait depression severity (Zotev et al., 2016).  

In a subsequent, larger randomized, double-blinded clinical trial, the same research group compared the clinical effects over two 
training sessions using a similar training protocol. The authors reported a significant group by session interaction and follow up-analyses 
suggested that only the experimental group (N=18) that trained amygdala up-regulation showed improved depressive symptoms (about 
39% reduction of the Montgomery-Åsberg Depression Rating Scale - MADRS - at the primary endpoint). Of interest, about 32% (6/19 
patients) were remitted (based on the MADRS score) at the primary endpoint (Young et al., 2017b). In contrast, mean scores in the 
control group (N=15) remained nearly unchanged (about 5%), and only one patient showed remission. Further, compared to the control 
group, the neurofeedback group presented higher hemodynamic and behavioral responses for positive visual stimuli, lower responses 
for negative stimuli (Young et al., 2017a). In a follow-up analysis the authors further reported functional connectivity changes between 
the amygdala and areas of the frontal and limbic network that correlated with the previously reported clinical improvement (Young et 
al., 2018a).  

In a subsequent non-randomized single-blind controlled study this neurofeedback paradigm was expanded by Zotev et al. (2019) 
to a multimodal, single-blinded, single-session training protocol combining fMRI based self-regulation training of the left amygdala and 
left rostral anterior cingulate cortex (rACC), as well as EEG based training of asymmetry in the alpha and beta band. Unmedicated 
patients were assigned either to the experimental group (N=16) that received veridical feedback or a control group (N=8) that received 
randomly generated feedback signals that were unrelated to their brain activity. The results suggested that the experimental group showed 
increased activity in the left amygdala, EEG asymmetries, as well as enhanced functional connectivity between the left amygdala and 
the left rACC (Zotev et al., 2019). However, no information about clinical effects was reported in this study. 

Hamilton et al. (2016) introduced another paradigm that employed functional connectivity based neurofeedback in which they 
investigated the ability of partly medicated MDD patients to down-regulate nodes from the salience network in the presence of negative 
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stimuli. Twenty patients were presented to pictures taken from the IAPS (International Affective Picture System) that were associated 
with negative valence to identify nodes involved in processing negative affect. The authors then allocated patients either to an 
experimental group that received veridical (N=10), or a control group (N=10) that received a form of sham neurofeedback training 
where participants are provided with the replay of visual feedback from the experimental group to control (yoked feedback). When re-
exposed to negative visual stimulation in a post test, only the neurofeedback group but not the control group showed reduced responses 
in neural nodes from the salience network. Moreover, there was a trend for lower scores for a self-reported responses to negative images 
(Hamilton et al., 2016). However, the study only assessed within group changes but no between group comparison, and clinical effects 
were not reported.  

More recently, Jaeckle et al. (2019) conducted a randomized, single-blinded trial that consisted of three training sessions. Patients 
(majority of them under medication) were either allocated to the experimental group (N=19) that trained up-regulation of functional 
connectivity between the right superior anterior temporal lobe and the right subgenual cingulate, or to a control group (N=16) that trained 
cognitive reappraisal techniques outside the fMRI scanner. Results suggested that both groups showed significant symptom 
improvement in the BDI scale (approximately 46% and 37%, respectively), but no significant difference between groups was found. 
Lastly, we note that some studies were not included in our primary analyses due to inclusion and exclusion criteria (Table 1); they are 
briefly summarized in the Supplementary Material (Section 4).  

 
 
3.3. Clinical efficacy for different control condition categories 

 
Both EEG and fMRI neurofeedback studies in MDD thus far published are heterogeneous with regards to some key design aspects of 
clinical studies. Albeit several studies employ similar training paradigms (e.g., alpha asymmetry EEG neurofeedback training of frontal 
electrodes, or self-regulation fMRI neurofeedback training of limbic areas), they vary substantially with regards to features such as 
randomization, blinding and control conditions. For instance, only six studies (2 applying EEG neurofeedback and 4 applying fMRI 
neurofeedback protocols) randomized patients to either an experimental or a control arm. Moreover, only four studies (all fMRI) used 
double-blinding, while the other fMRI neurofeedback studies (except for the first feasibility study) were single-blinded. Noteworthy, 
none of the EEG neurofeedback studies were single- or double-blinded, while all but one fMRI neurofeedback studies were at least 
single-blinded (Table 2). Whether neurofeedback studies allow single or double-blinded assessment depends largely on the choice of 
the control condition (Sorger et al., 2019): while some designs (e.g. yoked feedback) allow blinding patients (Young et al., 2017b), other 
active control conditions that are based on different instructions and veridical feedback do not (Mehler et al., 2018).  

Normalized baseline scores of depressive symptoms (see section 2.2) were largely comparable between studies as well as control 
conditions (where applicable). With the exception of five studies ((Linden et al., 2012), (Walker and Lawson, 2013), (Ramirez et al., 
2015), (Wang et al., 2016), and (Zotev et al., 2019)), patients were on average moderately to severely depressed and experimental and 
control groups were on average largely matched for their depression severity at baseline (group differences were mostly under 10%, 
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with only one study (Wang et al., 2016) showing a difference of 11.55%; see Figures 2A-B). However, most studies did not provide 
sufficient clinical information regarding prior treatment experience, treatment resistance, duration of illness, number of episodes and 
hospitalizations of patients (see Table S1 in the Supplementary Material). We also note that the EEG-NF field has either employed only 
single-arm studies (58%, in particular early studies) or passive control conditions, whereas the fMRI-NF field has exclusively employed 
active control conditions (71% inside the scanner and 29% outside the scanner).  
 Figures 2C-D and 2E-F show the symptom improvement per group and the difference of improvement between groups, 
respectively. In general, all groups presented some level of symptom improvement, with the exception of one study in which the control 
group presented 7.20% of mean symptom worsening (Linden et al., 2012). Regarding differences across groups, in seven studies the 
experimental group showed higher improvement than the control group, while in two studies the effect was in the opposite direction 
(Mehler et al., 2018; Wang et al., 2016). Moreover, group differences tended to be larger for studies that used a passive control groups 
compared to studies with active control groups, which found relatively small group differences (Figures 2E-F). This exploratory finding 
is in line with the notion that non-specific psychosocial effects are additive, and they confirm previous theoretical considerations (Ros 
et al., 2020; Sorger et al., 2019; Thibault et al., 2016).  

Another factor that may influence differences in clinical findings across studies are the number of training sessions. Given that 
the clinical samples listed in Figure 2 followed similar intervention schedules (i.e., 13/15 studies with one to two sessions a week, 1/15 
with three sessions a week, and 1/15 not reported) we explored the data for potential dose-effect relationships. In an exploratory plot we 
show the relation of symptom improvement in the experimental group vs. the number of sessions (Figure 3A). We found that EEG 
neurofeedback studies consisted of average of more training sessions (14.63, compared to 2.43 from fMRI studies), likely due to the 
substantially lower operating cost. Further, data suggested a positive linear trend for number of training sessions versus symptom 
improvement in the experimental group. We also looked at the relationship between number of training sessions and reported group 
differences for controlled studies (Figure 3B), which also suggested a positive trend. Additionally, a positive trend was observed for an 
association between the number of training sessions and depressive symptoms at baseline in the experimental group (Figure 3C) 
suggesting that more severely depressed patients were included in studies that provided patients with more neurofeedback sessions. 
However, a nearly horizontal line was observed for the relation between symptoms at baseline and clinical improvement for experimental 
groups (Figure 3D), suggesting no linear association between symptom severity at baseline and the primary endpoint. These data 
explorations should be treated with caution, however, given the heterogeneity in study designs with regards to control conditions.  
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Figure 2 - (A) Depressive symptoms in percentage scores at baseline, normalized by the individual scale maxima. (B) Sample size weighted average percentages 
of depression severity at baseline after grouping studies according to their control condition category. (C) Percentage of within-group improvement in depressive 
symptoms at the primary endpoint. (D) Sample size weighted average percentages of within group improvements in depressive symptoms, after grouping studies 
according to by their control condition category. (E) Between group differences in improvement. (F) Sample size weighted average percentages of within group 

improvements in depressive symptoms after grouping studies according to their control condition category. Studies evaluating the same database were 
represented as a single bar. *Wang et al. (2019) is represented by two bars since they tested two different neurofeedback protocols in one single experiment 

(please refer to Table 2).  
 

   

 
Figure 3 – (A) Trend of symptom improvement in experimental group and number of training sessions; neuroimaging modality indicated. (B) Trend of 

differences in symptom improvement between groups and number of training sessions, control condition category indicated. Studies evaluating the same 
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database were represented as a single point. (C) Trend of symptom severity at baseline and number of sessions. (D) Trend of symptom improvement in the 
experimental group and respective symptom severity at baseline. *These studies are represented by two points since they tested two different neurofeedback 

protocols in one single experiment (please refer to Table 2). 

 
Average NNTB/NNTHs based on reported remission rates ranged between -5.78 and 4 and were mostly positive (Table 5), 

suggesting the experimental groups showed higher efficacy with respect to remission from depression. Noteworthy, only one (unblinded, 
non-randomized) study (Lee et al., 2019) could rule out potential superiority of the control condition, which consisted of continued 
standard care (psychopharmacological medication), over the experimental condition, which consisted of continued standard care 
augmented by EEG neurofeedback training (Table 5). In contrast, the upper bounds of 3 trials were negative and they could hence not 
reject the null hypothesis that patients in the control arm showed a better clinical outcome compared to patients in the main treatment 
arm (Altman, 1998). One main reason for this finding is likely the relatively small sample sizes of studies that could not exclude potential 
superiority of the control group. For instance, although Young et al. (2017b) found a remarkable difference in remission between the 
experimental and the control group, the upper bound of the 95% confidence interval was -109.44; this negative values indicates that it 
remains possible that about 1 in 109 patients who are allocated to the experimental group will show less improvement compared to the 
control group.  

 
Table 5 – Numbers of remitters in experimental and control group and their percentages with respect to total number enrolled patients (dropouts were treated as 

non-responders), number needed to treat for one additional patient to benefit (or to be harmed) [NNTB/NNTH] and their respective 95% confidence interval (CI). 
Negative NNTB/NNTH or CIs indicate that patients in the control may have shown a better outcome.  

Study 
Experimental group Control group 

NNTB/NNTH 
Lower 
95% 
CI 

Upper 
95% 
CI 

Remitters / 
total sample 

Remission rate 
(%) 

Remitters / 
total sample 

Remission rate 
(%) 

Linden et al. (2012) 2/8 25.00 0/8 0.00 4.00 1.69 -8.31 

Young et al. (2017b) 6/19 31.58 1/17 5.88 3.89 2.06 -109.44 

Mehler et al. (2018) 4/21 19.05 8/22 36.36 -5.78 10.60 -2.44 

Lee et al. (2019) 6/12 50.00  1/12 8.33 2.40 1.49 19.66 

 
3.4. Reported side effects and drop-outs 
 
Side effects are rarely reported for neurofeedback interventions (Table 3, last column). This observation may be explained by the non-
invasive nature of the intervention, but partly also related to reporting practices (see Section 3.5). In general, we note that one limiting 
factor for the wide usage of clinical neurofeedback may be physical discomfort experienced before and during each session, respectively. 
For example, EEG protocols require a relatively long time for the EEG cap preparation (positioning, conductive gel, calibration) (Nijholt 
et al., 2011). It also results in residual gel over the participant’s head after the session. During fMRI protocols, on the other hand, the 
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patient may experience claustrophobia due to the physical restriction imposed by the equipment (Sulzer et al., 2013). These aspects are 
particularly relevant to MDD patients because their symptoms can include diminished interest, sleeping problems, psychomotor 
agitation, and fatigue or loss of energy (Association, 2013). We documented reported reasons for drop-outs or exclusions (Table 2), 
which included lack of motivation (Hammond, 2005), tiredness (Cheon et al., 2016; Paquette et al., 2009; Young et al., 2014), discomfort 
(Young et al., 2017a), logistics difficulties (Cheon et al., 2016; Choi et al., 2011) and excessive noise (possibly related with the patient’s 
agitation) (Escolano et al., 2014; Young et al., 2017b). However, we note that overall drop-out rates were relatively low and no serious 
side effects have been reported. 
 
3.5. Experimental design and reporting quality 
 
As noted above, a first overview of study designs (Table 2) suggests that while most neurofeedback studies published thus far employed 
control groups, only a minority conducted blinded assessment or randomized patients. We next assessed the quality of experimental 
designs and study reporting more systematically employing the JBI critical appraisal tools (Tufanaru et al., 2017) and CRED-nf checklist 
(Ros et al., 2020).  
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Figure 4 – Summary of CRED-nf scores. (A) the average score per CRED-nf item for category using EEG-based protocols (blue), fMRI-based protocols 

(orange), and the overall score across modalities (gray). (B) the average score per study using EEG- (blue) and fMRI-based (orange) protocols. Summary of JBI 
scores. (C) the trend of quality improvement measured with CRED-nf scores. (D) the average score per JBI item for studies using EEG-based protocols (blue), 

fMRI-based protocols (orange), and the overall score across modalities (gray). (E) the average score per study using EEG- (blue) and fMRI-based (orange) 
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protocols. (C) the trend of quality improvement measured with JBI scores. Studies reporting results from the same database are reported as an averaged single 
bar. 

 
As shown in Figure 4, EEG neurofeedback studies received on average lower scores in all CRED-nf points except for “Outcome 

measures” and “Data storage” (the latter was not fulfilled by any study included in this review). Similarly, EEG neurofeedback studies 
received on average lower scores for six of nine items of the JBI checklist. However, regarding the items “cause and effect”, “outcome 
reliability items”, both imaging methods presented full scores across studies, while for “multiple measurements”, EEG neurofeedback 
studies tended to score higher on average. Both the CRED-nf and JBI checklist allowed identifying some major limitations in the field 
which we discus below. These will inform our recommendations formulated in Section 4.  

Regarding the CRED-nf checklist, we first note that only five studies preregistered their experimental protocol. 
Complementarily, concerning the experimental design, one main limitation of EEG neurofeedback studies in depression is the lack of 
adequate control groups (only present in 38% of studies). A more general limitation, related to both imaging techniques, is the limited 
description of the online brain signal processing and artifact control. Although all included studies at least partly report how data is 
extracted and preprocessed (step 3), reporting often remained insufficient.   

When reviewing studies for reported outcome measures, we found that while some studies defined "success", or "control" 
measures explicitly, many studies did not: according to the CRED-nf scores (see Table S3 in the Supplementary Material), only 51% of 
studies reported neurofeedback success based on neural signals (33% EEG and 81% fMRI neurofeedback studies), while 54% plotted 
within- or between sessions (38% EEG and 81% fMRI studies).  

We also note that, only about 26% of studies declared the primary clinical outcome measure (only 17% EEG and 43% fMRI 
neurofeedback studies). The distinction between primary and secondary outcome measures is considered a quality standard in clinical 
research: it is central to evaluating the clinical efficacy of an intervention (e.g., to estimate remission rates) and to control for error rates 
(in contrast to test results for secondary outcome measures, test results for predeclared primary outcome measures usually do not require 
correction for multiple testing). Further, only 19% of studies evaluated psychosocial factors before or after the experiment. However, 
some EEG neurofeedback studies did not report if specific self-regulation strategies were provided/suggested to patients (58% EEG and 
100% fMRI studies providing this information), and only very few studies reported debriefing results and thus could capture the 
strategies used (8% using EEG and 19% using fMRI). Lastly, none of the studies stored the resulting (clinical or physiological) data or 
analysis code in publicly available domains.  
 
4. Discussion  
 
In this first systematic review of neurofeedback studies across imaging modalities conducted in depressed patients, we found that both 
EEG and fMRI studies report statistically significant and clinically meaningful within group improvements of clinical measures between 
6% and 73%. In comparison, between group comparisons showed numerically smaller changes ranging from -7% to 52%. These findings 
may be explained by differences in used controlled conditions. It is assumed, however, that overall clinical effects following 
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neurofeedback training can be partly or largely attributed to various non-specific factors: patient’s positive expectancies, the rewarding 
experience of positive feedback, but also regression to the mean likely contribute substantially to observed within group improvements.  

Neurofeedback training is a complex intervention and involves various degrees of freedom in designing control conditions. These 
range from passive control designs (e.g. continued standard care vs. continued standard care and neurofeedback augmentation training); 
these are expected to provide the least control of non-specific factors, to active control designs (e.g. continued standard care and 
neurofeedback augmentation training with vertical from a control region vs. continued standard care and targeted neurofeedback 
augmentation); these are expected to provide the most control for non-specific factors (Ros et al., 2020; Sorger et al., 2019; Thibault et 
al., 2016). As recently discussed in-depth by the neurofeedback community (Lubianiker et al., 2019; Sorger et al., 2019), the choice of 
optimal control conditions poses a challenge for neurofeedback experiments. Control conditions are important to evaluate non-specific 
effects and to compute more informative effect sizes such as NNTB that allow comparisons to other therapeutic approaches. To compare 
between-group clinical effects across neurofeedback studies, we therefore grouped these according to their control condition. Results 
indeed showed that active control conditions presented smaller group differences in favor of neurofeedback compared to more lenient 
passive control conditions (Figure 2E). Of interest, these findings are comparable to those reported for EEG neurofeedback training in 
ADHD (Cortese et al., 2016; Group et al., 2020; Van Doren et al., 2019).  

One main question when designing an intervention is the dose response relationship and the temporal evolution of treatment 
effects. Although there is no clear definition of  dosage of neurofeedback training, the number of neurofeedback sessions has been 
suggested as a potential proxy (Arns et al., 2009; Vernon et al., 2004). Indeed, first visual data exploration suggested a relationship 
between the number of neurofeedback training sessions and overall clinical effects in the treatment group (Figure 3A). However, as 
noted earlier, many EEG neurofeedback studies did not feature sufficient control conditions. Thus, this apparent finding may be 
confounded by other factors such non-specific neurofeedback, general non-specific, repetition related or natural effects (e.g., regression 
to the mean). We hence conducted a second exploratory analysis for controlled studies only, which also suggested a positive relationship 
between the number of training sessions and group differences (Figure 3B). One possible explanation for this observation is the learning 
process of a neurofeedback task: the feedback is initially based on unconditioned neural variability until the patient can learn, correct, 
and optimize the self-regulation strategies (Birbaumer et al., 2013; Ros et al., 2014). Moreover, delayed functional effects are commonly 
also observed in cognitive therapy: the improvement of cognitive restructuring strategies happens across sessions, and dose-response 
effects have been reported across psychiatric disorders (Robinson et al., 2020). Thus, from a neural as well as a cognitive perspective, 
an expected interval until the functional effects can be observed. However, while the presented findings are encouraging, we note that 
their interpretation is mainly conjectural given the heterogeneity in control conditions used in neurofeedback studies and the possibility 
that also this finding may be confounded/driven by non-specific effects that were not controlled for in rather lenient (e.g., passive) 
control conditions of some studies. Taken together, reported findings of clinical effects for neurofeedback training seem substantial and 
scale with time; however, therapeutic effects specific to neural targets are likely relatively small, and hence future RCTs will require 
larger samples to study neurofeedback-specific effects in depression. Further, longer follow-up periods are desirable; clinical effects 
following neurofeedback interventions have been documented to last, and partly further improve for up to several months after the last 
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neurofeedback session (Becerra et al., 2006; Gevensleben et al., 2010; Goldway et al., 2019; Mehler et al., 2018; Rance et al., 2018). In 
addition, it remains of interest to investigate to which degree observed effects occur within or between training sessions and whether 
there is an interaction thereof.  

Moving on to comparing EEG and fMRI, substantial differences in designs were found: Whereas most EEG studies lacked 
control conditions and were not blinded, recent fMRI studies increasingly fulfill these standards. In general, we found that fMRI studies 
tended to fulfill more study design and reporting quality criteria. One possible explanation for this result may be that most studies were 
planned and reported more recently compared to EEG-based protocols. They may also have been able to incorporate criticism raised 
against previous EEG neurofeedback studies, benefit from methodological advancements, and broader debates around adequate 
statistical aspects (Button et al., 2013; Nieuwenhuis et al., 2011). This trend is exemplified in Figures 4C and 4F.  

While most EEG neurofeedback studies can be considered (uncontrolled) phase IIa trials that aim to demonstrate feasibility, 
most fMRI neurofeedback studies represent (controlled) phase IIb trials that aim to demonstrate clinical efficacy. However, common to 
almost all studies are relatively small sizes, which render these statistically underpowered to detect small or medium effects. From RCTs 
conducted on the clinical effects of antidepressant medication, for instance, relatively small effects (Cohen’s d = 0.2 to 0.3) are 
documented for treatment vs. placebo controls (Cuijpers et al., 2014; Kirsch et al., 2008) To detect an effect size within this range with 
80% probability, studies would need to feature at least about 176 patients per group for a two-arm controlled study. At least for fMRI-
based neurofeedback protocols, such scales are likely only achievable in multi center studies. Some further ideas on this matter are listed 
in the recommendations section below. To further illustrate the limited power of existing studies, 3 of 4 studies that also reported 
remission rates could not rule out superiority of the control group in an NNTH analysis that we conducted (Table 5).  

Evaluating reporting practices, most included studies lacked information about several aspects that are considered essential or 
highly desirable such as declaring the primary outcome measure, reporting a sampling plan, reporting feedback controllability or 
remission rates. Hence, on average studies in the field still bear considerable risk for bias, which restricts generalizations that can be 
drawn from reported findings. Moreover, we note that several published studies included partly overlapping samples, which made it 
sometimes difficult to assess their quality in a coherent way. Further, such practice indicated that authors may have employed flexible 
sampling stopping rules (without adequate adjustment), which risks increasing type-I error rate (see the Recommendations section below 
for some suggestions). Most of these aspects could be addressed by comprehensive study preregistrations, including the declaration of 
the primary outcome measure, main hypotheses, intended sample size and planned analyses. Originally introduced in clinical medicine 
(DeAngelis et al., 2005), study preregistrations can restrict degrees of freedom and avoid sources for researcher bias, including outcome 
switching, inadequately used flexible stopping rules and analytical degrees of freedom (Nosek et al., 2018) as well as publication bias 
(Allen and Mehler, 2019).  

We also note that many studies, and in particular EEG neurofeedback studies, did not report neurofeedback success measures. 
A clear definition on success measures allows assessing the proportion of individuals who show relatively poor neurofeedback control, 
a phenomenon that has also been labeled as “illiteracy” (Allison and Neuper, 2010), and which likely pertains 10 to 50% of 
neurofeedback users (Alkoby et al., 2018; Allison and Neuper, 2010; Edlinger et al., 2015). Estimating the proportion of non-learners, 
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and ideally identifying predictors for self-regulation success, seem in particular important for neurofeedback studies with depressed 
patients who tend to process negative experiences (e.g. no self-regulation success) more negatively (Disner et al., 2017; Peckham et al., 
2010).  

Further, documenting experiment factors, such as attention from the staff, comfort in the experiment room, or motivation, 
measures of confidence, or frustration, and personal believes might help to understand variations in self-regulation performance (Paret 
et al., 2019), but also explain observed clinical effects. Constructs such as self-efficacy that are related to the psychopathology in 
depression (Bandura, 1982) may be modifiable through self-regulation training (Linden, 2014; Mehler et al., 2018). Ratings also showed 
that none of the included studies has shared their imaging and/or clinical data publicly and that only a few studies were preregistered. 
While such reservation may be an expression of data protection concerns, we note that data anonymization tools are widely available 
and it should be in the best interest of the community to make use of these and follow recent efforts of the neuroimaging community 
clinical medicine in tackling issues around reproducibility and replicability (Poldrack and Gorgolewski, 2014).  

Finally, it is crucial to use appropriate and robust methods for data extraction and preprocessing. For instance, most EEG and 
fMRI studies do not use state-of-the-art artifact control methods (e.g., electro-oculography and electromyography) when calculating the 
feedback signal. Similarly, for fMRI-neurofeedback, control for confounding factors such as online correction of head motion, breathing, 
and cardiovascular artefacts are often insufficiently reported, although they may have a major impact on reported findings (Weiss et al., 
2020). This finding is in line with earlier findings for fMRI neurofeedback studies more broadly (Heunis et al., 2020; Thibault et al., 
2018).  

Overall, our findings indicate that, CRED-NF and JBI checklist ratings suggest that fMRI neurofeedback studies featured on 
average better reporting quality. Yet, we note that the CRED-nf guidelines were published only very recently and hence the authors of 
the investigated studies could not use neurofeedback specific guidelines as orientation for design and reporting practices. Comparing 
JBI ratings reported here with other fields, the present sample featured an average rating of 6.17, which is similar to those reported in 
systematic reviews (that included a similar number of studies) conducted about fMRI neurofeedback training in stroke patients (mean 
6.24) and non-clinical/clinical fNIRS neurofeedback (mean 5.55) (Kohl et al., 2020; Wang et al., 2018). Also, with regard to essential, 
encouraged and total CRED-NF ratings, we found similar results (with 65% vs. 63%, 13% vs 10% and 47% vs. 45%, respectively) 
compared to the fNIRS-NF field (Kohl et al., 2020). Lastly, we note that one main limitation of this review was the relatively small 
number of studies that could be included, and which precluded employing other established meta-research techniques such as p-curve 
analysis (Simonsohn et al., 2014) or funnel plots to test for small study effects (e.g. due to publication bias). Further, the heterogeneity 
in study designs that controlled for non-specific effects to different degrees – which ranged from no control to very conservative active 
neurofeedback control conditions – rendered an aggregated effect size across studies rather meaningless. We therefore decided to merely 
provide estimates of clinical improvement in percentages averages for studies with similar control conditions.  
 
 
4.2. Recommendations 
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Despite promising first results with patient groups, current neurofeedback protocols present methodological challenges for real-world 
therapeutic applications (Arns et al., 2017; Thibault et al., 2016). Heterogeneity of protocols and inconsistent reporting make replication 
and standardization difficult. These aspects are crucial not only for the research community to understand and progress the 
neurofeedback technology (Thibault et al., 2017), but also for patients, since a poor setup can cause frustration and lead to discontinued 
training (Müller-Putz et al., 2015). Thus, in line with the final aim of this review, we provide here an overview of recommendations that 
future researchers should adopt for experiments with depressive patients. A more detailed discussion of these with a particular focus on 
points a) - c) can be found in the Supplementary Material (Section 6).  

 
Table 6 – Recommendations for future experiments with depressive patients (some of these points are discussed in more detail in Section 6 of the Supplementary 

Material). 
 

a) More comprehensive clinical documentation and phenotyping To ensure reliable clinical results and to allow comparison 
between studies, we recommend that future neurofeedback 
experiments in depressive patients use formal and standardized 
procedures to diagnose and evaluate clinical changes with 
clinician-rated scales (e.g., HDRS-21, MADRS) and self-rated 
scales (e.g., BDI-II or QIDS-SR16). Besides changes in sum scores 
of scales, we encourage reporting changes in individual items to 
assess changes in specific symptoms or symptom networks and 
cluster different types of responses (Fried and Nesse, 2015; Fried 
et al., 2017; Hofmann et al., 2016). Further detailed descriptions 
of previous antidepressant treatment and patients’ duration of 
illness should be provided to allow to assess the level of chronicity 
and treatment resistance of included patients, factors that may 
impact clinical outcomes (Kiebs et al., 2019). Further, we note 
that etiology of developing MDD is likely quite heterogeneous 
across patients (Winokur, 1997) and hence a more comprehensive 
clinical and phenotypic characterization may help identifying 
patients subgroups who benefit in particular from neurofeedback 
training.  

b) Choice of appropriate control conditions The use of control conditions is fundamental to determine if any 
positive effect is caused by the neurofeedback protocol or by other 
reasons. The best control design depends on the research interest, 
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and a decision tree for control conditions for neurofeedback 
applications was recently described by Sorger et al. (2019). In the 
context of depressive patients, different control conditions should 
be considered.  

c) Adequately powered studies Powering studies to be able to detect meaningful effect sizes or 
rule these out (Algermissen and Mehler, 2018). For instance, 
studies may set minimal clinically important differences (MCID) 
reported for depressed patients as their target effect size (Lakens 
et al., 2018). Further, alternative sampling strategies such as 
sequential Bayes Factor (SBF) sampling may be worthwhile 
exploring for clinical neurofeedback studies (Schönbrodt and 
Wagenmakers, 2018). Lastly, we recommend that null findings 
are followed up with appropriate statistical tests that allow 
providing evidence for the absence of an effect (Mehler et al., 
2019).  

d) Online and offline quality control of signals Although several studies report the exclusion of subjects due to 
excessive artifacts, only few studies intended to perform online 
quality control and denoising. This is not a particular problem in 
studies applying neurofeedback in MDD populations, but a 
current issue in the field (Heunis et al., 2020). Thus, we 
recommend that more rigorous approaches should be conducted 
during experiments and the reporting of results, for instance with 
regards to EOG and EMG noises in EEG-based protocols (Moretti 
et al., 2003), or respiration and pulse waves in fMRI-based 
experiments (Murphy et al., 2013). Further, it is fundamental to 
evaluate and report differences in artifacts between groups (Ros 
et al., 2020), since group-biased noisy data can lead to false 
conclusions.  

e) Standardization of protocols Several clinical neurofeedback studies targeting MDD patients do 
not focus on new methodological approaches (for example, 
testing signal processing and feedback presentation), but on 
potential clinical, cognitive, or neural benefits of targeting one, or 
more, brain regions (fMRI), or frequencies (EEG). In this context, 
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the use of standardized methods to extract information from the 
source signal, or to present the feedback would allow direct 
comparison between studies. Also, potential comparisons depend 
on a clear definition of success/learning, as well as the detailed 
report of responders/literates and non-responders/illiterates. In 
particular for depressed patients, insufficient self-regulation 
success may result in frustration and potentially deteriorate 
clinical outcome in individuals. In line with previous consensus 
(Ros et al., 2020), we recommend that individual self-regulation 
performances should be ideally reported and potential predictors 
of self-regulation success explored and researchers should aim to 
standardize approaches (Paret et al., 2019).  

f) Basic methodological research As pointed out by others (Paret et al., 2019), more basic research 
is needed to solve the many open methodological questions and 
increase standardization and agreements to finally inform 
translational work. This work seems particularly relevant for the 
treatment of MDD, which affects the reward system. Lastly, it has 
been suggested that neurofeedback may serve as a tool to test 
neural models (Nielson et al., 2020) or biomarkers suggested for 
MDD. However, there is reason for skepticism and discussions 
about the reliability and validity of biomarker research remain 
controversial (see Section 6f in the Supplementary Material).  

g) Exploring the potential for children and young adults The current review was limited to studies conducted in adults. 
However, given the low risk profile of non-invasive 
neurofeedback training and the promising clinical findings found 
in adults, we recommend that this approach should also be 
explored in younger patients. In particular modulating self-
referential beliefs such as self-efficacy may provide substantial 
clinical benefits related to anxious (Lewis et al., 2020) but also 
depressive symptoms. Noteworthy, first results from an fMRI 
neurofeedback study in depressed adolescence showed feasibility 
and promising clinical potential (Quevedo et al., 2019) (see also 
Section 6g in the Supplementary Material). Feasibility has also 
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been recently demonstrated in targeting anxiety (Zich et al., 2020) 
and depression (Quevedo et al., 2020) in adolescents.  

h) Appropriate reporting of methods and results In addition to the proper experimental design, an appropriate 
report of methods and results is crucial to advance the 
neurofeedback field and propagate reliable results. For example, 
an extensive methodological review showed that a substantial 
portion of neurofeedback studies do not apply or report adequate 
denoising methods in fMRI-based protocols (Heunis et al., 2020) 
(complete data base available here: https://rtfmri-
methods.herokuapp.com/). the CRED-nf checklist was created in 
a collaborative effort between several dozen laboratories to 
support this matter (Ros et al., 2020), including an easy-to-use app 
for quick validation (rtfin.org/CREDnf).  

i) Study preregistration and open science research practices To make neurofeedback findings transparent and reliable, as well 
as to allow further collaboration between research groups, we 
strongly recommend that researchers explore and implement open 
science research practices where possible (Allen and Mehler, 
2019; Nosek et al., 2015) by preregistering their study protocol 
and sharing the data that support their final results. Analytical 
degrees of freedom remain a controversial topic in neuroimaging 
(Botvinik-Nezer et al., 2020; Carp, 2012); real-time experiments 
already predeclare a substantial part of their analysis pipeline 
when setting parameters for real-time data analysis and it is hence 
in particular suited for study preregistration (e.g., Mehler et al. 
(2020)) or publishable research protocols (e.g., Cox et al. (2016)). 
Regarding data sharing practices, researchers can benefit from 
recommendations for reliable analysis pipelines (Nichols et al., 
2017), as well tools to standardize data accessibility and 
reproducibility (Gorgolewski et al., 2017) and facilitate data 
sharing (Gorgolewski et al., 2016; Poldrack et al., 2013).  
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5. Conclusion 
 
Neurofeedback presents a complex, non-invasive intervention which aims to target cognitive and affective processes affected in patients 
with depression through mental imagery-based self-regulation of functionally relevant brain areas or network. As such the approach has 
good face validity for MDD. Patients have shown significant clinical improvements as well as cognitive and neural changes following 
neurofeedback training with both EEG and fMRI-based protocols. Moreover, given the relatively low risk of side effects due to its non-
invasive nature, we consider neurofeedback in particular worth exploring as an augmentation therapy for patients who have already 
received standard care but remain symptomatic. However, our review also found that most studies published thus far still lag current 
best practice standards of study design and reporting quality. Some main issues are the lack of study preregistration, the use of mostly 
small and/or unbalanced samples as well as the lack of control conditions, randomized treatment allocation or blinding. These issues 
render the evaluation of clinical effects difficult and require improvements in future studies. Following a first attempt to quantify the 
contribution of different non-specific effects for studies that included a control group, our results suggest that non-specific effects add 
up such that more passive control conditions (e.g., continued standard care) yield larger group differences compared to more conservative 
active control conditions (e.g., successful neurofeedback self-regulation training from an alternative brain region). We close with a set 
of recommendations for future studies, which include suggestions for more comprehensive clinical documentation, considerations 
regarding adequate control conditions, a synopsis of some statistical and study design aspects that can help achieving more adequately 
powered and hence more informative studies, aspects concerning signal quality and protocol standardization, and lastly pointers to open 
science resources.  
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