000904443 001__ 904443
000904443 005__ 20220103172046.0
000904443 0247_ $$2doi$$a10.1111/pce.13939
000904443 0247_ $$2ISSN$$a0140-7791
000904443 0247_ $$2ISSN$$a1365-3040
000904443 0247_ $$2Handle$$a2128/29675
000904443 0247_ $$2altmetric$$aaltmetric:93774546
000904443 0247_ $$2pmid$$apmid:33150971
000904443 0247_ $$2WOS$$aWOS:000589761200001
000904443 037__ $$aFZJ-2021-06013
000904443 082__ $$a580
000904443 1001_ $$00000-0002-4220-8761$$aAbdalla, Mohanned$$b0$$eCorresponding author
000904443 245__ $$aStomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance
000904443 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2021
000904443 3367_ $$2DRIVER$$aarticle
000904443 3367_ $$2DataCite$$aOutput Types/Journal article
000904443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640857249_6994
000904443 3367_ $$2BibTeX$$aARTICLE
000904443 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904443 3367_ $$00$$2EndNote$$aJournal Article
000904443 520__ $$aThe fundamental question as to what triggers stomatal closure during soil drying remains contentious. Thus, we urgently need to improve our understanding of stomatal response to water deficits in soil and atmosphere. Here, we investigated the role of soil–plant hydraulic conductance (Ksp) on transpiration (E) and stomatal regulation. We used a root pressure chamber to measure the relation between E, leaf xylem water potential (ψleaf-x) and soil water potential (ψsoil) in tomato. Additional measurements of ψleaf-x were performed with unpressurized plants. A soil–plant hydraulic model was used to simulate E(ψleaf-x) for decreasing ψsoil. In wet soils, E(ψleaf-x) had a constant slope, while in dry soils, the slope decreased, with ψleaf-x rapidly and nonlinearly decreasing for moderate increases in E. The ψleaf-x measured in pressurized and unpressurized plants matched well, which indicates that the shoot hydraulic conductance did not decrease during soil drying and that the decrease in Ksp is caused by a decrease in soil–root conductance. The decrease of E matched well the onset of hydraulic nonlinearity. Our findings demonstrate that stomatal closure prevents the drop in ψleaf-x caused by a decrease in Ksp and elucidate a strong correlation between stomatal regulation and belowground hydraulic limitation.
000904443 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904443 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904443 7001_ $$0P:(DE-Juel1)180847$$aCarminati, Andrea$$b1
000904443 7001_ $$0P:(DE-Juel1)156154$$aCai, Gaochao$$b2
000904443 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b3
000904443 7001_ $$0P:(DE-HGF)0$$aAhmed, Mutez Ali$$b4
000904443 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.13939$$gVol. 44, no. 2, p. 425 - 431$$n2$$p425 - 431$$tPlant, cell & environment$$v44$$x0140-7791$$y2021
000904443 8564_ $$uhttps://juser.fz-juelich.de/record/904443/files/Plant%20Cell%20Environment%20-%202020%20-%20Abdalla%20-%20Stomatal%20closure%20of%20tomato%20under%20drought%20is%20driven%20by%20an%20increase%20in%20soil%20root.pdf$$yOpenAccess
000904443 909CO $$ooai:juser.fz-juelich.de:904443$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b3$$kFZJ
000904443 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904443 9141_ $$y2021
000904443 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2019$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2019$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000904443 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904443 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-30
000904443 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904443 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904443 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904443 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000904443 980__ $$ajournal
000904443 980__ $$aVDB
000904443 980__ $$aUNRESTRICTED
000904443 980__ $$aI:(DE-Juel1)IBG-3-20101118
000904443 9801_ $$aFullTexts