001     904445
005     20220103172034.0
024 7 _ |a 10.1016/j.catena.2021.105698
|2 doi
024 7 _ |a 0008-7769
|2 ISSN
024 7 _ |a 0341-8162
|2 ISSN
024 7 _ |a 1872-6887
|2 ISSN
024 7 _ |a 2128/29686
|2 Handle
024 7 _ |a altmetric:113244268
|2 altmetric
024 7 _ |a WOS:000703268900111
|2 WOS
037 _ _ |a FZJ-2021-06015
082 _ _ |a 550
100 1 _ |a Brosens, Liesa
|0 0000-0002-6350-8018
|b 0
|e Corresponding author
245 _ _ |a Have land use and land cover change affected soil thickness and weathering degree in a subtropical region in Southern Brazil? Insights from applied mid-infrared spectroscopy
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640859037_6994
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Land use and land cover changes (LUCC) can drastically alter various components of the critical zone, including soil thickness and soil chemical weathering processes. Often these studies, however, tend to focus on extreme cases, not representing what actually happens on average at larger, regional scales. Here, we evaluate the impact of LUCC on soil thickness and soil weathering degree at the regional scale, where we use soil spectroscopy to derive weathering indices. In a subtropical region in Southern Brazil, we collected calibration/validation soil samples (n = 49) from 4 different locations for which we measured the mid-infrared (MIR) spectral reflectance and 3 soil chemical weathering indices: chemical index of alteration (CIA), the total reserve in bases (TRB), and the iron ratio (Fed/Fet). We used partial least square regressions on this calibration/validation dataset to relate the MIR spectra of the soil samples to these weathering indices, resulting in good calibration relationships with R2 values of 0.97, 0.91 and 0.84 for CIA, TRB and Fed/Fet, respectively. Applying these relations to MIR spectra of regionally collected soil samples allowed us to calculate soil weathering degrees for a large number of soil samples (n = 229), without requiring costly and time-consuming chemical analyses. We collected these soil samples at 100 mid-slope positions: 50 under forest and 50 under agricultural land use. Land use explained only a minor part of the variation in soil thickness and weathering degree. Thus, while local water and tillage erosion rates might be considerable after deforestation, this has not led to significant reductions in average soil thickness and has not affected soil weathering degree. Slope gradient is the main factor influencing the spatial variability in soil thickness and weathering degree on mid-slope sections in our study area. Human activities over the last century did not fundamentally alter these patterns.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Robinet, Jérémy
|0 0000-0001-5700-9362
|b 1
700 1 _ |a Pelckmans, Ignace
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ameijeiras-Mariño, Yolanda
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Govers, Gerard
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Opfergelt, Sophie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Minella, Jean P. G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 7
773 _ _ |a 10.1016/j.catena.2021.105698
|g Vol. 207, p. 105698 -
|0 PERI:(DE-600)1492500-X
|p 105698 -
|t Catena
|v 207
|y 2021
|x 0008-7769
856 4 _ |u https://juser.fz-juelich.de/record/904445/files/1-s2.0-S0341816221005567-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904445
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129548
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CATENA : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21