000904447 001__ 904447
000904447 005__ 20220103172034.0
000904447 0247_ $$2doi$$a10.3390/molecules26175130
000904447 0247_ $$2ISSN$$a1420-3049
000904447 0247_ $$2Handle$$a2128/29687
000904447 0247_ $$2pmid$$a34500563
000904447 0247_ $$2WOS$$aWOS:000694393600001
000904447 037__ $$aFZJ-2021-06017
000904447 082__ $$a540
000904447 1001_ $$00000-0002-3802-9381$$aHaber-Pohlmeier, Sabina$$b0
000904447 245__ $$aMagnetic Resonance Imaging of Water Content and Flow Processes in Natural Soils by Pulse Sequences with Ultrashort Detection
000904447 260__ $$aBasel$$bMDPI$$c2021
000904447 3367_ $$2DRIVER$$aarticle
000904447 3367_ $$2DataCite$$aOutput Types/Journal article
000904447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640859097_28447
000904447 3367_ $$2BibTeX$$aARTICLE
000904447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904447 3367_ $$00$$2EndNote$$aJournal Article
000904447 520__ $$aMagnetic resonance imaging is a valuable tool for three-dimensional mapping of soil water processes due to its sensitivity to the substance of interest: water. Since conventional gradient- or spin-echo based pulse sequences do not detect rapidly relaxing fractions of water in natural porous media with transverse relaxation times in the millisecond range, pulse sequences with ultrafast detection open a way out. In this work, we compare a spin-echo multislice pulse sequence with ultrashort (UTE) and zero-TE (ZTE) sequences for their suitability to map water content and its changes in 3D in natural soil materials. Longitudinal and transverse relaxation times were found in the ranges around 80 ms and 1 to 50 ms, respectively, so that the spin echo sequence misses larger fractions of water. In contrast, ZTE and UTE could detect all water, if the excitation and detection bandwidths were set sufficiently broad. More precisely, with ZTE we could map water contents down to 0.1 cm3/cm3. Finally, we employed ZTE to monitor the development of film flow in a natural soil core with high temporal resolution. This opens the route for further quantitative imaging of soil water processes.
000904447 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904447 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904447 7001_ $$0P:(DE-Juel1)167367$$aCaterina, David$$b1
000904447 7001_ $$00000-0002-1152-4438$$aBlümich, Bernhard$$b2
000904447 7001_ $$0P:(DE-Juel1)129521$$aPohlmeier, Andreas$$b3$$eCorresponding author
000904447 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules26175130$$gVol. 26, no. 17, p. 5130 -$$n17$$p5130 -$$tMolecules$$v26$$x1420-3049$$y2021
000904447 8564_ $$uhttps://juser.fz-juelich.de/record/904447/files/molecules-26-05130-v3.pdf$$yOpenAccess
000904447 909CO $$ooai:juser.fz-juelich.de:904447$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129521$$aForschungszentrum Jülich$$b3$$kFZJ
000904447 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904447 9141_ $$y2021
000904447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000904447 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904447 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOLECULES : 2019$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904447 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000904447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000904447 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000904447 980__ $$ajournal
000904447 980__ $$aVDB
000904447 980__ $$aUNRESTRICTED
000904447 980__ $$aI:(DE-Juel1)IBG-3-20101118
000904447 9801_ $$aFullTexts