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Correspondence: Jan Vanderborght (j.vanderborght@fz-juelich.de)

Received: 8 January 2021 – Discussion started: 27 January 2021
Revised: 10 July 2021 – Accepted: 22 July 2021 – Published: 6 September 2021

Abstract. Root water uptake is an important process in
the terrestrial water cycle. How this process depends on
soil water content, root distributions, and root properties is
a soil–root hydraulic problem. We compare different ap-
proaches to implement root hydraulics in macroscopic soil
water flow and land surface models. By upscaling a three-
dimensional hydraulic root architecture model, we derived
an exact macroscopic root hydraulic model. The macroscopic
model uses the following three characteristics: the root sys-
tem conductance, Krs, the standard uptake fraction, SUF ,
which represents the uptake from a soil profile with a uniform
hydraulic head, and a compensatory matrix that describes
the redistribution of water uptake in a non-uniform hydraulic
head profile. The two characteristics, Krs and SUF , are suf-
ficient to describe the total uptake as a function of the col-
lar and soil water potential, and water uptake redistribution
does not depend on the total uptake or collar water potential.
We compared the exact model with two hydraulic root mod-
els that make a priori simplifications of the hydraulic root
architecture, i.e., the parallel and big root model. The paral-
lel root model uses only two characteristics, Krs and SUF ,
which can be calculated directly following a bottom-up ap-
proach from the 3D hydraulic root architecture. The big root
model uses more parameters than the parallel root model, but
these parameters cannot be obtained straightforwardly with
a bottom-up approach. The big root model was parameter-
ized using a top-down approach, i.e., directly from root seg-

ment hydraulic properties, assuming a priori a single big root
architecture. This simplification of the hydraulic root archi-
tecture led to less accurate descriptions of root water uptake
than by the parallel root model. To compute root water up-
take in macroscopic soil water flow and land surface models,
we recommend the use of the parallel root model with Krs
and SUF computed in a bottom-up approach from a known
3D root hydraulic architecture.

1 Introduction

Plant transpiration, which corresponds with about 40 % of
the precipitation on land (Oki and Kanae, 2006; Trenberth et
al., 2007; Good et al., 2015) is an important component of
the terrestrial water cycle. It drives water flow from the soil
into the plant and plays an important physiological role for
distributing minerals from the soil to the aboveground part
of the plant and for regulating the temperature of the leaves.
Understanding where and when plants take up water from the
soil is important to unravel the interaction between climate,
soil and plant growth, manage soil water, and select or breed
plants that are performing optimally in a certain soil climate
environment. Therefore, root water uptake is a sensitive pro-
cess in land surface and crop models (Gayler et al., 2013;
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Wöhling et al., 2013; Vereecken et al., 2015, 2016; Ferguson
et al., 2016; Whitley et al., 2017).

There are several ways to distinguish and classify root
water uptake models, namely macroscopic versus micro-
scopic, mechanistic versus empirical, and bottom-up versus
top-down (Feddes et al., 2001; Hopmans and Bristow, 2002).
Here, we will focus on models that describe water flow in the
soil–root system mechanistically based on soil and plant hy-
draulics, i.e., based on water potential gradients in each sys-
tem, on root and soil conductances, and on exchange or radial
soil–root conductances. When water flow is described mech-
anistically in the soil–plant system, processes with an im-
portant impact on root water uptake emerge from the model
simulations and do not have to be parameterized (Javaux et
al., 2013). These include hydraulic redistribution when water
uptake from the wetter part of the root zone is released in the
drier part and root water uptake compensation when root wa-
ter uptake shifts to wetter zones (Katul and Siqueira, 2010).
The differences between different modeling approaches that
we consider are related to the spatial representation of the
root system and its architecture or topology.

A first approach to modeling this system is to start with
a simplified concept of the root system or its topology. Al-
though the topology of the root system may also be consid-
ered as a parameterization of a model that describes water
flow in the soil root system, we consider the root topology
here as being a specific “model” that is fixed a priori in a
kind of top-down approach and that is subsequently param-
eterized based on measurements of soil water potential, leaf
water potential, transpiration fluxes, and information about
the root system, such as the root density distribution and hy-
draulic properties of root segments. In total, two a priori pro-
posed root system topologies can be distinguished, i.e., big
root and parallel root models.

Big root models are 1D models in which the root system
is represented by one vertical “big root”. In this model, all
root segments in a layer at a certain depth are grouped in
one “tube” and these tubes are connected in series with each
other. Nimah and Hanks (1973) used this approach to simu-
late root water uptake but simplified the head losses due to
axial flow. The axial big root hydraulic conductance, which
determines head losses due to axial flow in the root system,
and the radial big root conductance, which determines the ex-
change between the soil and the root, were obtained by scal-
ing intrinsic root segment conductances with the cross sec-
tional and surface area of the root segments in the soil profile,
respectively, and the unsaturated soil hydraulic conductivity
(Amenu and Kumar, 2008; Quijano and Kumar, 2015).

The second simplified root topology model is what we de-
fine as the “parallel root model”. In the parallel root model,
the root system is conceptualized to consist of branches of
different lengths that take up water near their tips and that
are all connected in parallel to a root collar node (Gou and
Miller, 2014). The parallel root system considers a connec-
tion in series between the radial and axial conductances of a

single root branch. Thus, this model can also account for ax-
ial root conductances or for head losses due to flow along the
root branch (Hillel et al., 1976). The model is parameterized
by the distribution of absorbing root surface with depth and
the conductances of the root branches that connect these sur-
faces with the root collar. Although it is not identical to the
parallel root model, a model that shows similarities with the
parallel root model is the model by Ryel et al. (2002), which
has been implemented in several land surface models.

A further simplification is to neglect the axial resistance so
that the water potential in the root xylem is the same every-
where (Gardner and Ehlig, 1962; Wilderotter, 2003; de Jong
van Lier et al., 2008, 2013; Siqueira et al., 2008; Manoli et
al., 2014; Daly et al., 2018). This simplification wipes out the
difference between the big root and parallel root models.

The second approach starts from an explicit 3D representa-
tion of the root architecture and the distribution of root seg-
ment conductances and describes the flow in the branched
root network that is coupled to flow in the soil (Doussan et
al., 1998, 2006; Javaux et al., 2008). Hydraulic characteris-
tics of the root system, such as the root system conductance
and the root water uptake distribution for a uniform soil water
potential distribution, can be derived using analytical solu-
tions of the flow equations in the root system. These charac-
teristics were derived for single roots with constant (Lands-
berg and Fowkes, 1978) or varying root hydraulic properties
(Meunier et al., 2017b) and for branched root systems (Roose
and Fowler, 2004; Meunier et al., 2017c). The solutions pro-
vide a direct or a bottom-up link between the root architec-
ture and the hydraulic properties of root segments, on the one
hand, and the hydraulic root system characteristics, on the
other hand (Meunier et al., 2017a). By making assumptions
about the axial conductance of the root system, Couvreur et
al. (2012) derived an approximate model that simulates the
uptake for arbitrary soil water potential distributions within
the root zone and that uses these hydraulic root system char-
acteristics. The form of the obtained model is similar to that
of the parallel root model, but it uses root system character-
istics that were derived from an exact or numerical solution
of the flow in the 3D hydraulic root architecture. In other
words, even though the model formulation is similar to the
parallel root model, the systems’ properties were not derived
in a top-down approach by a priori assuming a parallel root
model. The model was formulated originally to simulate the
3D distribution of the water uptake in the soil by a 3D root
architecture. When it is assumed that the soil water poten-
tials do not vary in the horizontal direction, the model can be
scaled up to a 1D formulation of the same form to calculate
vertical water uptake profiles (Javaux et al., 2013; Couvreur
et al., 2014a). Another approach was followed by Bouda and
Saiers (2017), who derived an upscaled 1D root water uptake
model using a so-called root system architecture stencil that
is calibrated on solutions of water flow in a 3D root archi-
tecture. Bouda (2019) showed recently that the root system
architecture stencil they derived based on solutions of water
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flow in 3D root system architectures is similar to an analyti-
cally exact solution of the big root model.

Both big root and parallel root models are approximations
of the real 3D root architecture, and the connectivity of the
individual root segments and topology of the root system
may have an important impact on the root system function-
ing (Bouda et al., 2018). Analytical solutions of water up-
take by single roots, which are represented as “porous pipes”
with uniform radial and axial conductances, demonstrated
that water uptake takes place along the entire root length
but that, due to limiting axial conductance, uptake may de-
crease from the proximal to the distal part of roots (Lands-
berg and Fowkes, 1978). The solutions obtained with these
models question assumptions made in parallel root models
about negligible axial root resistances or about negligible up-
take along the root and suggest that a big root model may be a
better option. On the other hand, root tissue maturation gen-
erally leads to a decrease in radial root conductivity towards
the older proximal end of roots so that root water absorbance
can be larger near the root tips. A fibrous root system archi-
tecture, with several lateral roots that are connected at the
root collar and that take up water near the root tips, might
be represented better by a parallel root model than by a big
root model, even when axial resistances cannot be neglected.
In the case of several parallel root branches, the xylem wa-
ter potentials may differ between the different branches at a
given depth, and a big root model is not able to account for
these variations in xylem water potentials.

Upscaling of water flow in 3D root architectures to models
that describe 1D root water uptake profiles in soils is crucial
to implement root hydraulics in land surface models that de-
scribe exchanges of water and energy between the land sur-
face and the atmosphere at catchment, continental, and global
scales. Also, for crop models, which predict crop growth
and yield at the field scale, an upscaling to 1D uptake pro-
files is necessary. Root hydraulics have been implemented in
1D land surface models using big root or parallel root mod-
els to represent emerging processes like hydraulic redistri-
bution and root water uptake compensation, which have an
important impact on transpiration, assimilation, and biogeo-
chemical cycles during dry spells and seasons (Quijano et al.,
2013; Liu et al., 2020). Yan and Dickinson (2014) and Fu et
al. (2016) implemented the parallel root-like model of Ryel,
whereas Tang et al. (2015) implemented a big root model.
Kennedy et al. (2019) implemented a parallel root model in
the community land model (CLM), and Sulis et al. (2019) im-
plemented an approach proposed by Couvreur et al. (2012),
which is, for a certain parameterization, equivalent to a par-
allel root model. Nguyen et al. (2020) demonstrated that dif-
ferences in drought stress and crop growth in different soils
with different soil hydraulic properties could be predicted by
a crop model that considers root hydraulics, whereas com-
monly used empirical relations failed. Root hydraulics are
also important to describe the interaction of different species
that share the same soil volume. Quijano et al. (2012) de-

veloped a multispecies model that simulates root water up-
take by different species from a shared soil water reservoir
based on their big root model. Each species was represented
by its own big root model, and the different big root models
took up water from the shared soil water profile. The model
demonstrated the impact of hydraulic redistribution on the
uptake by the different species and their mutualistic depen-
dencies. Water taken up deep in the soil profile by deep root-
ing trees was released in the shallower soil layers where it
could be accessed by shrubs or understory vegetation. Sim-
ilar conclusions were drawn by Manoli et al. (2014, 2017),
using a parallel root system model. Although all models re-
produced the impact of root hydraulics on ecosystems fluxes,
a model comparison by Zhu et al. (2017), who compared
Ryel’s model with a big root model and an empirical root
water uptake compensation model, highlighted that different
models led to fairly different results. However, the nature of
these differences is not well understood.

The objective of this paper is to derive, with a bottom-
up approach, an exact upscaled 1D model that describes root
water uptake, considering the hydraulics of the 3D root archi-
tecture, and that could readily be implemented in land surface
models. The model will be compared with parallel root and
big root models that are currently used in 1D models. In or-
der to interpret the models and their differences, we will cast
in a first part the solutions of the models in a form that uses
two hydraulic root system characteristics, namely the root
system conductance and the root water uptake distribution
for a uniform soil water potential or hydraulic head distri-
bution. This was already done for a parallel root system by
Couvreur et al. (2012), but an exact formulation of root wa-
ter uptake in terms of these characteristics for a general root
system model, including a 3D root model and its upscaled
version and a big root model, is still missing. We will show
that these characteristics are, for all models, sufficient to de-
scribe the total root water uptake as a function of soil and col-
lar water potentials or hydraulic heads. We will further show
that these root system characteristics fully define the parallel
root model. Additional terms or factors in the equation for
the exact root system can be used as diagnostics of the de-
viation between the parallel root system model and the exact
3D model or its upscaled version due to differences in root
system topology. A second consequence of the parallel root
model being fully defined by the two root hydraulic charac-
teristics is that it can be parameterized straightforwardly in a
bottom-up approach. In a second part, we will compare the
upscaled exact model with the parallel and big root models
that can be parameterized in two different ways, i.e., a top-
down parameterization in which parameters are derived from
the root segment distribution and root segment hydraulic pa-
rameters assuming a priori big root or parallel root topolo-
gies, versus a bottom-up parameterization of the parallel root
model that uses exact hydraulic root system characteristics
obtained from solving the flow equations in the 3D hydraulic
root architecture (Fig. 1). For the parallel root system model,
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Figure 1. Bottom-up approach versus top-down approaches for a parallel and a big root system model to derive and parameterize an upscaled
one-dimensional root water uptake model.

we can evaluate to what extent the simulated uptake is im-
pacted by the simplified root system topology while using
exact hydraulic root system characteristics. First, the models
will be compared for a very simple hypothetical root system
that represents a hybrid form of the two “asymptotic” root
architectures (parallel root versus big root model). Second,
the models will be compared for single roots with realistic
distributions of root segment properties and for realistic root
architectures of plants with a tap root or a fibrous root sys-
tem.

2 Setup of equations

The flow into and within a single root can be described using
the porous pipe model (Landsberg and Fowkes, 1978) with
the following equation:

d
d`
kx

dHx

d`
=−2πrkr(Hsoil−Hx), (1)

where ` (L, where L refers to the physical quantity length)
is the local axial coordinate of the root, kx (L3 T−1, where
T refers to the physical quantity time) and kr (T−1) are the
intrinsic axial and radial root segment conductances, r (L) is
the root segment radius, and Hx (L) and Hsoil (L) are the hy-
draulic heads of the water in, respectively, the xylem and the
soil in contact with the root, which include both the pressure
potential and the elevation potential. Intrinsic conductances

refer here to properties of the root segments that are inde-
pendent of the axial discretization that we use to solve the
equation. We can discretize this equation for a root system
network that consists of Nroot root segments (edges) that are
connected with each other in nodes (vertices). The entire net-
work is connected to one outlet node that represents the root
collar where the hydraulic head, Hcollar, or the flux boundary
condition is defined. Since branches of a root architecture do
not rejoin distally (further away from the collar), there is only
one segment that connects a certain node with the proximal
(closer to the collar) part of the root system or each node
is the distal node of only one element (except for the collar
node). Therefore, the network of Nroot root segments con-
nectsNroot root nodes with each other and the root collar. The
root nodes (but not the collar node) are connected by Nroot
soil–root segments to Nroot soil nodes. The total number of
segments (root segments connecting root nodes and soil–root
segments connecting roots with soil nodes) is 2Nroot. The to-
tal number of nodes in this system, including the collar node,
is 2Nroot+ 1. Each root node (except the collar node) can
be linked uniquely to two segments, i.e., a root segment that
connects the node to the proximal part of the root system
and a soil–root segment that connects the node to the soil.
The axial conductance Kx[i] (L2 T−1) of the proximal root
segment and the radial conductance of the soil–root segment
Kr[i] (L2 T−1) connected to the ith root node are defined as
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follows:

Kx[i] =
kx[i]

l[i]
(2)

Kr[i] = 2πr[i]l[i]kr[i], (3)

where l[i] (L) is the length, and r[i] (L) is the radius of the
proximal root segment connected to the ith root node. The
transpiration stream to the collar, T (L3 T−1), the xylem hy-
draulic heads, and the fluxes from the soil to the root nodesQ
(L3 T−1) are obtained from solving the Laplacian matrix of
the weighted directed graph of soil and root nodes, which is
the discrete representation of the flow equation in the porous
pipe root system as follows:

[IM · diag(K) · IMT
]

Hcollar
H x

H soil

=
−T0

Q

 , (4)

where IM is the (2Nroot+1×2Nroot) incidence matrix of the
graph with 2Nroot+ 1 nodes and 2Nroot segments. The rows
of the incidence matrix represent the nodes of the graph, and
the columns are the segments. The first row represents the
root collar, the next Nroot rows the root nodes, and the last
Nroot rows the soil nodes. The first Nroot columns represent
the root segments and the last Nroot columns soil–root ele-
ments. IM[i,j ] = 1 when node i is a distal node of element j ,
IM[i,j ] = −1 when i is proximal node of element j , and
IM[i,j ] = 0 otherwise. H x is theNroot vector with xylem hy-
draulic heads in the root nodes, and H soil is the Nroot vector
with the soil water hydraulic heads in the soil nodes. diag(K)
is a diagonal conductivity matrix with the first Nroot diago-
nal elements representing the xylem conductivities and the
lastNroot elements the radial conductances. 0 is anNroot vec-
tor with zeros, and Q is the Nroot vector with fluxes from
the soil nodes to the root nodes. The derivation of Eq. (4)
is demonstrated in the Appendix. The first equation repre-
sents the total transpiration stream out of the network as a
function of the hydraulic heads in the root collar and the root
nodes connected to the collar and the axial conductances of
the root segments connected to the root collar. The nextNroot
equations close the water balances in root nodes, and from
solving these, the xylem hydraulic heads in the root nodes
are obtained. The lastNroot equations yield the fluxesQ from
the soil nodes to the root nodes.

Plugging the obtained xylem hydraulic heads in the last
Nroot equations, the fluxes towards each root node are ob-
tained from Eq. (4) (see the Appendix) as follows:

C4H soil+C5Hcollar =Q, (5)

where C4 (L2 T−1) is an Nroot×Nroot symmetric matrix and
C5 (L2 T−1) an Nroot× 1 column. The relations between C4,
C5, the root segment conductivities (stored in diag(K)), and
the segment connections (defined in the incidence matrix
IM) are given in Table 1. This equation can be written in an-
other form that uses macroscopic characteristics of the root

system, i.e., the root system conductance, Krs (L2 T−1), and
the standard uptake fraction vector SUF (Nroot× 1) of the
root nodes that were introduced by Couvreur et al. (2012).
Krs relates the total root water uptake to the difference be-
tween an average or effective soil water hydraulic head, Heff
(L) and Hcollar as follows:

T =
∑
i

Q=Krs(Heff−Hcollar). (6)

SUF[i] represents the fraction of the total uptake by the ith
root node for a uniformHsoil. In the Appendix, we derive that
Heff corresponds with the SUF -weighted average of Hsoil as
follows:

Heff = SUF TH soil. (7)

Equation (7) implies that the effective soil water hydraulic
head depends more strongly on soil water hydraulic heads
where the root system takes up more water when the soil wa-
ter hydraulic head is uniform. Equations (6) and (7) imply
that Krs and SUF are sufficient root system properties for
calculating the total root water uptake. Using these macro-
scopic root system characteristics, Eq. (5) can be rewritten as
follows:

Q=KrsSUF (Heff−Hcollar)+C4(H soil−H eff), (8)

where H eff is a (Nroot×1) vector filled withHeff. The deriva-
tion of Eq. (8) is given in the Appendix, and we summarize
the main properties of the equation here. The first term on the
right-hand side of Eq. (8) represents the uptake from the soil
profile when the soil water hydraulic head is uniform and
equal to Heff. The definition of Heff as the SUF -weighted
average of Hsoil makes that the sum of the fluxes of the sec-
ond term of the right-hand side of Eq. (8) becomes zero (see
Eq. A33). The second term on the right-hand side represents
the increase (decrease) in the amount of water that is taken
up by a root node that is connected to soil node where Hsoil
is higher (lower) than Heff. This second term represents the
compensatory uptake, and we name the C4 matrix the com-
pensatory matrix. Of note is that the second term only de-
pends on the hydraulic root architecture (defining C4 and
SUF ) and on the soil water hydraulic head distribution. It
neither depends on the water potential at the root collar nor
on the transpiration rate. As a consequence, root water up-
take compensation changes over time only due to changes in
the soil water hydraulic heads but not due to, e.g., diurnal
changes in transpiration rate. In Table 1, relations between
Krs, SUF , C4, Heff, and the root hydraulic architecture are
given.
Krs and SUF can be calculated directly from the compen-

satory matrix C4. In the following, we will present a refor-
mulated form of Eq. (8) that resembles the equation that is
obtained for a parallel root system. For the derivation, we
refer to the Appendix, and we focus here on the results.
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Table 1. Equations to calculate the root system hydraulic conductance, Krs, the standard uptake fraction, SUF, and the compensatory uptake
matrix, C4, from the hydraulic root architecture.

C= IM · diag(K) · IMT
collar (2Nroot+ 1× 2Nroot+ 1) (9)

C1 = C[i,j ] for i = 2, . . .,Nroot+ 1, j = 1 (10)
C2 = C[i,j ] for i = 2, . . .,Nroot+ 1, j = 2, . . .,Nroot+ 1 (11)
C3 = C[i,j ] for i = 2, . . .,Nroot+ 1, j =Nroot+ 2, . . .,2Nroot+ 1 (12)
C4 = diag(Kr)

[
I+C−1

2 C3
]
(Nroot×Nroot) (13)

C5[i] = −
∑
j

C4[i,j ] (14)

Krs =
∑
i

∑
j

C4[i,j ] (15)

SUF[i] =

∑
jC4[i,j ]∑

i

∑
jC4[i,j ]

(16)

As is derived in the Appendix, the matrix C4 in Eq. (8) can
be “factorized” in a product of two diagonal matrices, i.e.,
one with a diagonal that is equal to the SUF vector and one
with a diagonal that represents a “compensatory conductivity
vector” Kcomp. There is also one matrix C7, which is close
to the identity matrix I, so that Eq. (8) can be rewritten as
follows:

Q=KrsSUF (Heff−Hcollar)

+ diag(Kcomp)diag(SUF )C7(H soil−H eff). (17)

The diagonal elements of C7 are 1, and for each row of C7,
the sum of the off-diagonal elements is equal to zero. To ex-
plain the meaning of Kcomp and how it is related to Krs in
the parallel root system model, we consider a soil water hy-
draulic head distribution that is uniform except for one node
i, where the hydraulic head is 1H higher than in all other
nodes (Hsoil[j ] =Hsoil[i] −1H for all j 6= i). We, further-
more, put Hcollar equal to Heff so that there is no net up-
take but only redistribution of water through the root system.
Then the flow from node i to all other nodes in the root sys-
tem, 1Q[i], is as follows:

1Q[i] = kcomp[i]1H, (18)

where kcomp[i] (L3 T−1) represents the conductivity of the
root system to transfer water from all other root elements to
the root node i. From the definition of Heff, it follows that:

Hsoil[i] −Heff = (1−SUF[i])1H
Hsoil[j ] −Heff =−SUF[i]1H for all j 6= i. (19)

Using this H soil−H eff in Eq. (17), from the soil hydraulic
heads Hsoil[j ] being all the same for the soil nodes j and
different from i and from the off-diagonal elements of a row
in C7 summing up to zero, it follows that 1Q[i] is:

1Q[i] = SUF[i]Kcomp[i] (1−SUF[i])1H. (20)

By comparing Eqs. (18) and (20), we find that SUF[i](1−
SUF[i]) Kcomp[i] = kcomp[i].

For a root system in which all root nodes are connected in
parallel to the root collar, kcomp[i] is equal to the equivalent
conductance of a serial connection of a conductance from
root node i to the collar, which is SUF[i]Krs, with a conduc-
tance from the collar to all other nodes, (1−SUF[i])Krs, and
it follows that:

kcomp[i] =
(
(SUF[i]Krs)

−1
+ ((1−SUF[i])Krs)

−1)−1

= SUF[i](1−SUF[i])Krs. (21)

This implies that, for a parallel root system, Kcomp =Krs.
It can further be shown that C7 is the identity matrix for a
parallel root system (see Appendix), so that Eq. (8) can be
written as follows:

Q=KrsSUF (Heff−Hcollar)

+Krsdiag(SUF )(H soil−H eff). (22)

The parallel root system is fully defined by the SUF and
Krs, and the compensatory uptake is defined when the up-
take distribution from a soil profile with a uniform soil water
hydraulic head is known. This implies that any root system
can be represented by a parallel root system with the same
SUF and Krs that simulates the same total root water uptake
for any distribution of soil water hydraulic heads. However,
comparing Eq. (22) with Eq. (17) shows that the compen-
satory uptake between the root system and its parallel root
analogue differs and that diag(Kcomp) and C7 can be used
as diagnostics for the difference in compensatory uptake. For
the general root system, we find that Kcomp[i] is larger than
Krs. This means that for a certain 1H between soil node i
and all other nodes, there is more redistribution in the general
root system than in the parallel root system. In the general
root system, the flow from one soil–root interface to another
soil–root interface does not always have to pass through the
collar but can take a shorter way. A negative value of C7[i,j ]

means that, for a given hydraulic head difference between
two nodes i and j , there is more redistribution between node
i and j than the average redistribution for this head differ-
ence between node i and another node than node j of the

Hydrol. Earth Syst. Sci., 25, 4835–4860, 2021 https://doi.org/10.5194/hess-25-4835-2021



J. Vanderborght et al.: Macroscopic representation of root hydraulics 4841

network. This means that node i is stronger than the average
connected to node j .

3 Upscaling

From the matrix equations, it follows that the upscaling of the
relations between the uptake ratesQ and soil water hydraulic
heads Hsoil is trivial for cases when the soil water hydraulic
heads are uniform in certain regions of the soil. When we as-
sume that the soil water hydraulic heads do not change in the
horizontal direction, then we can simply group and sum up
all SUF values for the soil root nodes that are in the same soil
horizontal soil layer and derive an upscaled SUF vector that
describes the relative uptake from each soil layer when the
soil water hydraulic heads are uniformly distributed (Cou-
vreur et al., 2014a; Fig. 2). The upscaled matrix C4 that is
multiplied by a vector of soil water hydraulic heads in the
different soil layers is simply obtained by the following:

C4,upscaled[i,j ] =
∑

k∈layeri

∑
l∈layerj

C4[k, l]. (23)

The dimensions of the upscaled matrices are reduced so that
the number of equations that need to be solved is reduced
to the number of layers in which the soil water hydraulic
heads are uniform. This implies a massive reduction in the
computational cost compared with the cost of solving equa-
tions for a large number of root segments that make up a
3D root architecture. Under the assumption that the soil wa-
ter hydraulic heads are constant within a layer, the obtained
equations are exact, independent of the soil water hydraulic
heads, and need to be derived from the large set of equations
for a given 3D root architecture only once. They can be used
afterwards to calculate uptake from the layers for other col-
lar and soil hydraulic heads. Based on the upscaled C4 and
SUF , the upscaled C7 and Kcomp can be derived. It must
be noted that C7 and Kcomp cannot be scaled up directly by
summing up elements in the C7 matrix and Kcomp vector.
When the 3D root architecture is a parallel root architecture,
then the upscaled model has the same form as Eq. (22) in
which the upscaled SUF is used. This upscaled model rep-
resents an upscaled parallel root system with each root con-
necting one soil layer with the to the root collar. It should
be noted that we did not derive an “upscaled” root system
topology for the exact model. In the following, we will al-
ways refer to the upscaled parallel root model. The upscaling
was performed here assuming uniform soil water hydraulic
heads in the horizontal direction. It can be applied for any
region where soil water hydraulic heads are assumed to be
uniform. The upscaled parallel root model then represents a
root system with parallel roots that each connect one region
with the root collar.

Figure 2. Upscaling of the SUF and C4 matrix by simply taking
the sum of elements that correspond with nodes where the soil water
hydraulic heads are the same. Nodes with the same water hydraulic
heads are grouped in layers and are marked with the same color.
The elements of the marked blocks of the Q and SUF vectors and
in the C4 matrix are summed up.

4 Demonstrations

In order to demonstrate the model, its upscaling, and compar-
ison with big root and parallel root approximations, we con-
sidered in a first step an abstract “hybrid” parallel–big root
system, which is a mixture of the parallel and big root sys-
tems. It consists of three parallel branches of different length
that each take up water along their length and not only at the
root tip, as supposed in the parallel root system. Since the
water fluxes in each of the three branches are different be-
cause of their different lengths, the water hydraulic heads in
the xylem at a given depth differ between the three roots even
when the soil water hydraulic heads do not vary at a given
depth. Therefore, this hybrid root system represents an in-
termediate model that neither matches with the parallel root
nor the big root model perfectly. This model should demon-
strate the upscaling and the difference between the approxi-
mate models. We used a dummy parameterization of the root
hydraulic properties and of the vertical distribution of the soil
water hydraulic heads (i.e., the parameters were chosen to
represent certain differences but the actual values of the pa-
rameters and their units were not of interest). We considered
a case in which all the root segments had the same radial
conductance and a case in which the radial conductance at
the root tips were a factor of 10 larger.

In a second step, we considered a single root with either
constant or changing root hydraulic parameters along the root
axis.

In a third step, we considered root systems that corre-
spond, in terms of complexity and parameterization, to more
realistic root systems and represent three different crops of
grass, maize, and sunflower.

4.1 Simple hybrid root system

Figure 3a shows the hybrid parallel–big root system that con-
sists of three primary root branches of different length which
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Figure 3. Resistance nets representing the hybrid parallel–big root system consisting of three primary root branches of different lengths (a).
There are also approximations by the big root model (b), the parallel root model using a bottom-up parameterization (c), and the parallel root
model with a top-down parameterization (d). The closed circles represent root nodes and the open circles soil nodes; the brown and green
resistors represent radial and axial root segment conductances, respectively. The approximate models describe upscaled root water uptake
from four depths. The SUF br,Krs,br,Kcomp,br, and C7,br of the big root model are calculated from the segment axial and radial conductances
that are arranged following the big root topology in parallel within a soil layer from which upscaled big root segment conductances Kr,up,br
and Kx,up,br are calculated (top-down parameterization). The SUF and Krs of the parallel root model with bottom-up parameterization (c)
are matched to those of the upscaled hybrid model by adapting the axial conductance Kx,up,eff of the segment that connects the xylem node
at a certain depth to the collar node. The SUF of the parallel root model with top-down parameterization, assuming infinite Kx,up (d), is
derived from the distribution of radial root segment conductances with depth, which are scaled to Kr,up,eff so that Krs matches that of the
hybrid root system. The equations below the resistance nets represent the equations that calculate the upscaled water uptake Q in a horizontal
layer.

take up water from up to four different depths. This root sys-
tem was scaled up to a model that describes uptake from the
four depths, assuming that the soil water hydraulic head is
uniform at a given depth (the exact model). The upscaled
SUF , which represents the uptake by all root segments at
a certain depth, was equal to the sum of the SUF s of the
individual root segments at that depth. The upscaled hybrid
parallel–big root system model was approximated by paral-
lel and big root system models. The big root approximation

assumes that the root segments are organized and connected,
following the a priori defined big root architecture, so that
the upscaled axial Kx,up,br and radial Kr,up,br conductance in
a certain layer is the sum of the axial and radial conductances
of the individual root segments in that layer (Fig. 3b). Since
we assume a priori a certain topology of the root segments
and parameterize the model directly, based on the number
of root segments in a soil layer and their properties (radial
and axial conductances), we called this a top-down param-
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eterization. For the parallel root approximation, we consid-
ered a root system with the same SUF and Krs as the up-
scaled hybrid model (Fig. 3c). For a given distribution of ra-
dial conductances, Krs and SUF can be defined by adapting
an upscaled effective Kx,up,eff of virtual root branches that
connect a certain depth with the root collar. This parameter-
ization, which is based on calculations for the 3D hydraulic
root architecture, corresponds with a bottom-up parameteri-
zation. For the upscaled parallel root model, the number of
parameters that needs to be defined is equal to the number of
soil layers, ndepths, i.e., ndepths Kx,up,eff values or Krs and
ndepths−1 SUF values (sum of SUF= 1). In contrast, the
big root model requires two ndepths parameters. Unlike for
the parallel root system, there is no simple relation between
Krs and SUF , on the one hand, and the compensatory up-
take term, on the other, for the big root model. Therefore, the
structure of the big root model does not lend itself to calculat-
ing its parameters directly from characteristics of the 3D hy-
draulic root architecture in a bottom-up approach. The third
model that we considered is a parallel root model with an
infinitely large axial conductance (Kx,up =∞) in which the
SUF is derived in a top-down approach directly from the dis-
tribution of the upscaled radial conductances, Kr,up,eff, with
depth. The Krs of this root system was adjusted to the Krs of
the hybrid root system, which comes down to a scaling of the
radial conductance of all root nodes with the same factor.

We considered two parameterizations of the root hydraulic
conductances. In the first case, the conductances of all root
segments are uniform, i.e., Kx = 10 and Kr = 1. In the sec-
ond case, the radial root hydraulic conductance is larger at the
root tips (Kr = 1) than in the other parts along the primary
roots (Kr = 0.1). To evaluate the effect of a non-uniform hy-
draulic head in the soil, the soil water hydraulic heads var-
ied from top to bottom as −0.5, 0, 0.5, and 1 and were as-
sumed to be the same for root nodes at the same depth. The
hydraulic head at the root collar was set to −1. The Krs,
SUF , and Kcomp, their upscaled values for the hybrid root
system, and the three approximations are given in Tables 2
and 3 for the root system with homogeneous root segment
conductances and for the root system with higher radial con-
ductances at the root tips, respectively. The root water up-
take profiles that are simulated by the different models for
the two parameterizations of the root segment conductivities
are given in Figs. 4 and 5.

The parallel root system with a top-down parameteriza-
tion and using the distribution of root segment radial conduc-
tances with depth to estimate SUF overestimates the SUF

deeper in the soil profile and underestimates it at shallower
depths. The resistance to axial flow reduces the SUF of dis-
tal root segments compared to the SUF of more proximal
root segments. The big root model can better account for the
impact of the axial resistance on the SUF . However, the as-
sumption of equal xylem hydraulic head in all root segments
at a certain depth leads to an underestimation of the SUF of
the proximal root segments (Table 2). This underestimation

Figure 4. Upscaled water uptake profile (left axis) and soil water
potential distribution (right axis; red line) for the hybrid parallel–
big root system with constant radial conductances along the primary
root branches, with the parallel root model with bottom-up parame-
terization (SUF andKrs derived from the exact model), the big root
model, and the parallel root model with top-down parameterization.

Figure 5. Upscaled water uptake profiles (left axis) and soil water
potential distribution (right axis; red line) for the hybrid parallel–
big root system with radial conductances along the primary root
branches that vary along the branches (radial conductance is 1
at root tips and 0.1 at other nodes), with the parallel root model
with bottom-up parameterization (SUF andKrs derived from exact
model), the big root model, and the parallel root model with top-
down parameterization.

was not important when the radial conductance was larger
near the root tips (Table 3).

For a non-uniform distribution of the soil water hydraulic
head, which increased with depth, the uptake increased at
greater depths and decreased at shallower depths, as com-
pared to the uptake under the uniform soil water hydraulic
head (Figs. 4 and 5). All models reproduced this compen-
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Table 2. Krs, SUF , Kcomp, and upscaled values and C7 matrices for the hybrid parallel–big root system with constant Kr along the roots,
the big root system, and the parallel root system (with infinite Kx) using top-down parameterization.

Big root Parallel
Hybrid parallel–big root (top down) (top down)

Kr = 1, Kx = 10, Krs = 6.0147 Krs = 6.1122 InfKx,
Krs = 6.0147

Prim. root 1 Prim. root 2 Prim. root 3 Upscaled

Depth SUF SUF SUF SUF SUF SUF

1 0.1396 0.1319 0.1273 0.3988 0.3908 0.3333
2 0.1269 0.1108 0.1010 0.3387 0.3299 0.3333
3 0.1007 0.0848 0.1855 0.1920 0.2222
4 0.0771 0.0771 0.0873 0.1111

Kcomp Kcomp Kcomp Kcomp Kcomp

1 6.65 7.13 7.44 7.52 7.68
2 6.70 7.98 8.94 8.41 8.65
3 8.09 10.09 9.35 9.39
4 10.26 10.26 10.00

C7 matrix of the upscaled hybrid
parallel–big root system

1 0 0 0
0.042 1 −0.030 −0.012
0.078 −0.014 1 −0.064
0.106 0.017 −0.123 1

C7 matrix big root system

1 0 0 0
0.044 1 −0.030 −0.014
0.071 −0.022 1 −0.050
0.091 0 −0.091 1

sation of root water uptake. The parallel root model with
bottom-up parameterization, which used the exact root sys-
tem SUF andKrs, underestimates the root water uptake com-
pensation, whereas the big root model overestimates it. The
parallel root model uses Krs to calculate the compensatory
uptake, and Krs was smaller than Kcomp (Tables 2 and 3).
The big root model overestimates the compensation since it
assumes that all root segments in a certain layer are directly
connected to all the root segments in the overlying or under-
lying layers and that the xylem hydraulic heads are the same
in all root segments at a certain depth. This implies that the
redistribution of water between the soil layers via the root
system can occur directly without flow having to pass the
collar first before it returns to another layer. The Kcomp that
is derived for the big root model is only slightly higher, ex-
cept for the deepest root node, than the Kcomp of the exact
model. The larger uptake from the deeper layer simulated by
the big root model is, therefore, linked to the larger SUF

in the deeper soil layers. This is also the case for the par-

allel root model with bottom-up parameterization for which
the higher SUF at greater depths in combination with higher
soil water hydraulic heads at greater depths led to a larger
simulated water uptake.

Also of interest is that the upscaled Kcomp values are not
equal to the average of the Kcomp values of the root nodes
in a soil layer. For the top layer, the upscaled Kcomp is even
larger than the largest Kcomp value of the three primary root
branches. Smaller radial conductance away from the root tips
led to a root system that behaves more like a parallel root
system (Fig. 5). This is reflected in the Kcomp values that are
closer to Krs and the C7 matrix that is closer to the iden-
tity matrix than the C7 matrix of the hybrid parallel–big root
system with uniform root segment hydraulic properties (Ta-
ble 3). The higher radial root segment conductances near
the root tips allow the water transfer between two soil lay-
ers through root tips in these soil layers, which passes via
the root collar, to be more efficient than water transfer be-
tween a root tip segment and a root segment with lower radial
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Table 3. Krs, SUF , Kcomp, and upscaled values and C7 matrices for the hybrid parallel–big root system with variable root radial root
segment conductances along the roots (Kr = 0.1 along roots, except at root tip Kr = 1) for the big root system and for the parallel root
system (with infinite Kx) using top-down parameterization.

Big root Parallel
Hybrid parallel–big root (top down) (top down)

Kr = 1, Kx = 0.1, Krs = 2.7673 Krs = 2.7673 InfKx,
Krs = 2.7673

Prim. root 1 Prim. root 2 Prim. root 3 Upscaled

Depth SUF SUF SUF SUF SUF SUF

−1 0.0328 0.0328 0.0328 0.0984 0.0984 0.0833
−2 0.2984 0.0298 0.0298 0.3580 0.3576 0.3333
−3 0.2709 0.0270 0.2979 0.2979 0.3056
−4 0.2457 0.2457 0.2462 0.2778

Kcomp Kcomp Kcomp Kcomp Kcomp

−1 3.0274 3.0295 3.0313 3.0485 3.0485
−2 2.8067 3.3170 3.3213 2.9419 3.3373
−3 2.8815 3.6389 2.9847 3.5590
−4 2.9892 2.9892 3.5898

C7 matrix of the upscaled hybrid
parallel–big root system

1 0 0 0
−0.004 1 0.002 0.002
−0.002 0.007 1 −0.005
−0.002 0.008 −0.006 1

C7 matrix of the big root system

1 0 0 0
0.009 1 −0.005 −0.004
0.014 0.017 1 −0.031
0.015 0.02 −0.035 1

conductance that is directly connected to it. In the big root
model, the root tip segment with higher radial conductance
in one layer is assumed to be directly linked to the root tip
segment in another layer so that the water flow between these
layers occurs more efficiently than via the root collar. This is
reflected in the higher Kcomp and the larger deviation in the
C7 matrix from the identity matrix for the big root model
than for the hybrid parallel–big root model, which leads to
an overestimation of the root water uptake compensation by
the big root model.

4.2 Single root branches

We considered two single root branches, one with ho-
mogeneous (intrinsic) root segment conductances (kx =

0.171 cm3 d−1, kr = 1.81× 10−4 d−1) and one with conduc-
tances that changed along the root axis due to maturation of
the root tissue (Fig. 6). This generally leads to an increase in
axial conductance and a decrease in radial conductance with

age or distance from the root tip (Doussan et al., 1998, 2006;
Zarebanadkouki et al., 2016; Couvreur et al., 2018; Meunier
et al., 2018b). The “reference” exact model was a 50 cm long
root discretized in 0.5 cm long root segments.

The collar water hydraulic head was assumed to be
−4000 cm, and the soil water hydraulic head varied linearly
between −3000 cm at the soil surface and 0 cm at the low-
est depth of the root system. The upscaled model considered
2 cm long segments.

As expected, the big root system matches nearly perfectly
with the exact model (Fig. 7). The deviations are due to the
upscaling and the variations in soil water and xylem hy-
draulic heads along a root segment that is represented by a
single node (Bouda, 2019). Nevertheless, the close agree-
ment indicates that the 0.5 cm discretization of the root ap-
proximates the exact solution of the flow equation in the sin-
gle root well. Details on the convergence of this discretiza-
tion and on exact solutions for arbitrary root segment sizes
(given that the soil water potentials do not vary along the
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Figure 6. Radial (a, c), kr, and axial (b, d), kx, intrinsic root con-
ductances for the single root (a, b) and root system architectures (c,
d). For the single root, conductances are plotted versus depth and
for the root system architectures versus root segment age.

root segments) are given by Meunier et al. (2017b, c). For
large root segment sizes or small Kx, when the discrete ap-
proximation becomes inaccurate, exact solutions can be im-
plemented in a complex root architecture (see Bouda, 2019),
but this should lead to a different coefficient matrix C4 and
C5 vector. The parallel root model with a top-down parame-
terization that derives the SUF based on the radial root seg-
ment conductances assuming an infiniteKx overestimates the
SUF in the distal part of the root since the impact of the ax-
ial resistance to flow is not considered. For a larger soil water
hydraulic head near the distal end of the root, the overesti-
mation of the SUF in this region results in an overestimation
of the root water uptake from the deeper soil and an over-
estimation of the apparent root water uptake compensation.
The opposite is the case for the parallel root system with

a bottom-up parameterization, which uses the exact SUF .
This model underestimates the uptake near the distal end of
the root due to an underestimation of Kcomp by the parallel
root model. However, for a root with non-uniform root seg-
ment conductances, uptake simulated with this parallel root
system represents nearly perfectly the exact uptake and even
slightly better than the big root system. Even for a single root,
which can be considered to be a “perfect” big root system, the
parallel root model may perform quite well when it uses the
exact SUF . This is even better when root segment conductiv-
ities vary along the root. TheKcomp profiles and C7 matrices,
which are shown for the two root systems in Fig. 8, may be
used as diagnostics of the approximation of the root water
uptake by the parallel root model. Rather than the absolute
values of the ratios of Kcomp/Krs and of the entries in the C7
matrix, the distributions of these values along the root profile
seem to indicate whether a parallel root model can describe
the uptake profile. For the root with uniform root segment
conductances, larger values of Kcomp/Krs and off-diagonal
entries in C7 that deviated from zero were distributed more
over the entire root length, whereas for the root with non-
uniform root segment conductivities, these larger values and
deviations were concentrated near the root tips.

4.3 Realistic root systems

We generated root systems of three different plants, i.e.,
maize, sunflower, and grass, using the CRootBox shiny app
(https://plantmodelling.shinyapps.io/shinyRootBox/, last ac-
cess: 27 August 2021; Schnepf et al., 2018). The grass root
system with several primary roots and few laterals may rep-
resent a parallel root system. The maize root system, with
several primary roots that each take up water along their axis
by lateral roots, may represent a hybrid parallel–big root sys-
tem, whereas the sunflower root system with a single main
root and several lateral roots might rather represent a big root
system (Fig. 9). The intrinsic radial and axial root segment
conductances depended on the root order and varied with
age (Fig. 6). We assumed that this relation between root age
and segment conductance did not vary between the crops. It
should be noted that the root architectures and intrinsic root
segment conductances were chosen to illustrate the differ-
ence between the different root water uptake modeling ap-
proaches for more realistic root systems. However, the de-
rived root system characteristics should not be interpreted as
the characteristics of a certain crop. As for single root branch
simulations, the collar water potential was −4000 cm, the
soil water potential at the soil surface −3000 and 0 cm at the
maximal rooting depth of the root system. The SUF and root
water uptake distributions were scaled up to and derived for
2 cm thick horizontal soil layers yielding 1D vertical profiles.

For the parameterization of the big root model, we cal-
culated the axial conductance of the big root for each soil
layer i, Kx,up,br[i], from the length, orientation, and intrin-
sic axial conductances of all the root segments in that layer
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Figure 7. Standard uptake for homogeneous soil water potential (SUF ) (a, b) and root sink term for a linear increase in water potential with
depth (c, d) of a single root branch with uniform (a, c) and age-dependent (b, d) root segment conductances. Approximations are calculated
for the parallel root with a bottom-up parameterization using the exact SUF and Krs, the big root model, and parallel root model with a
top-down parameterization, with SUF estimated from the radial root segment conductivities. Sink terms are divided by the thickness of the
soil layer, 2 cm, over which the root segment sink terms are summed.

as follows. First we calculated an “effective” intrinsic axial
conductance for flow in the vertical direction in the ith soil
layer, kx,eff,[i], as follows:

kx,eff[i] =

∑
j l[j ]|cos(α[j ])|kx[j ]∑

j l[j ]
, (24)

where α[j ] is the angle of the segment with the vertical,
and j is the indices of root segments in layer i. To obtain
Kx,up,br[i], we multiplied the effective intrinsic axial conduc-
tance by the number of roots that cross the layer and divided
it by the layer thickness. The number of roots that cross the
layer i is calculated from the sum of the vertical increments
of the root segments divided by the layer thickness so that we

obtained the following:

Kx,up,br[i] =
kx,eff[i]

∑
j l[j ]|cos(α[j ])|

1z[i]2
. (25)

The radial conductance of the big root system in layer i,
Kr,up,br[i], was calculated by simply adding up the radial con-
ductances of the root segments.

For the parallel root system with bottom-up parameteriza-
tion, we used the SUF and Krs values of the exact upscaled
model. For the parallel root model with the top-down param-
eterization, assuming an infinite Kx, the SUF was directly
calculated from the distribution of the radial root segment
conductances that were upscaled as in the big root model as
follows:
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Figure 8. C7 matrices and profiles of the ratio of Kcomp/Krs of the exact single root model with uniform (a) and non-uniform (b) root
segment hydraulic conductances along the root. The labels on the axes of the C7 matrices represent the root segment numbers, which
increase from the proximal to the distal end of the root, i.e., from top to bottom. For visualization, the diagonal elements of the C7 matrix
were set to 0.

SUF[i] =
Kr,up,br[i]∑
iKr,up,br[i]

. (26)

To account for the effect of resistance to axial flow, the ex-
act Krs is used in the top-down parameterized parallel root
model. It should be noted that Eqs. (24), (25), and (26) use
information about root segments, such as their orientation,
age, root-type-dependent conductance, and surface, which is
mostly not used or available to parameterize macroscopic hy-
draulic root water uptake models. Mostly, the root segment
conductances and root radii are assumed to be constant so
that root length density is used to estimate the hydraulic prop-
erties. Since we focus in this paper on the differences be-
tween different model structures, we used the more detailed
information to avoid differences due to differences in infor-
mation that was used for parameterization.

The root system conductances that are estimated from the
root segment conductances, considering the 3D hydraulic
root architectures, Krs, or using a big root representation,
Krs,br, are given in Table 4. The root system conductances
for sunflower are considerably smaller than those of maize
and grass. This is attributed to sunflower having only one sin-
gle tap (primary) root with a high intrinsic axial conductance
(Fig. 6) versus maize and grass having many primary roots.
Krs,br is larger than the exact Krs. The top-down parameteri-
zation of the big root model (Eqs. 24 and 25) in combination
with the assumption that the root architecture can be repre-
sented by a single big root leads to an overestimation of the
root system conductance. This was also observed for the sim-
ple hybrid parallel–big root model (Table 2).

For the grass root system, which consists of several short
primary roots with high axial conductance, SUF is almost

Table 4. Root system conductances, Krs, and root system conduc-
tances of the big root model, Krs,br, estimated from root segment
conductances.

Krs (cm2 d−1) Krs,br (cm2 d−1)

Maize 0.0576 0.0781
Sunflower 0.00555 0.0068
Grass 0.045 0.0489

not sensitive to the assumed root architecture (Fig. 10e).
For the maize and sunflower root systems, the parallel root
system using a top-down parameterization and assuming no
axial resistance to flow underestimated the SUF at shal-
lower depths and overestimated it at intermediate (maize)
and deeper (sunflower and maize) depths (Fig. 10a and c).
Not considering axial resistance to flow leads to an overesti-
mation of the uptake capacity of the distal ends of roots, es-
pecially when the axial conductivity decreases and the radial
conductance increases towards the root tip (see also Fig. 7b).
Depths where the SUF is strongly overestimated correspond
with depths with high densities of younger lateral roots. The
SUF of the big root model corresponded better with the ex-
act SUF . But, in the big root model, the axial resistance to
flow from the distal ends of the deep primary roots to the col-
lar is apparently overestimated and the SUF in the deeper
soil layer underestimated. In the big root model, the xylem
water potentials in the secondary and primary roots in a cer-
tain layer are assumed to be equal, since it is assumed that all
root segments in a layer act in parallel. However, because of
the lower axial conductance of secondary roots (see Fig. 6)
which are connected in series to primary roots, the xylem wa-
ter heads can be considerably higher in the secondary than in
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Figure 9. Root systems generated with the CRootBox shiny app.
(a) Maize. (b) Sunflower. (c) Grass. Colors refer to the root order.

the primary roots in a certain layer. Assuming similar xylem
water heads in secondary and primary roots in a certain soil
layer reduces the xylem heads in the secondary roots and
generates too much uptake by the secondary roots in that
layer. An overestimation of uptake in a more “downstream”
or shallower soil layer will lead to an underestimation in the
more “upstream” or deeper layers. These effects may explain
the underestimation of the SUF below approximately 50 cm
depth in the maize and sunflower root systems that is com-
pensated by an overestimation in shallower depths.

The non-uniform soil water hydraulic heads resulted in
an increased uptake deeper in the soil profile (compare the
shape of the SUF and sink term profiles in Fig. 10). For
the grass root system, the sink distributions for the different
models are very similar. The higher uptake predicted by the
big root model is due to the higher Krs,br than the true Krs.
For the other root system models, the differences between
the sink term distributions of the exact model, the big root
model, and the parallel root model with top-down parame-
terization, assuming infinite axial conductance, are caused
by differences in Krs, SUF , and compensatory uptake re-
sulting from approximations of Kcomp and the C7 matrix
(Fig. 11). The parallel root model with bottom-up parameter-
ization that uses the exact Krs and SUF profile but approx-
imates Kcomp by Krs and C7 by the identity matrix, predicts
almost the same sink term distribution profile as the exact
model. This bottom-up parallel root model slightly underes-
timates the compensatory root water uptake, i.e., too much
uptake near the soil surface and too little deeper in the soil
profile. The exact Kcomp/Krs trace and C7 matrix of the root
systems (Fig. 11) suggest the largest deviations between the
sink term distributions of the exact model and the bottom-
up parallel root model for the sunflower root system, which
corresponds with the results shown in Fig. 10. The impact of
approximations of Kcomp and the C7 matrix on the sink term
distribution is apparently of second-order importance com-
pared to the impact of the estimatedKrs (big root model) and
SUF (big root model and top-down parallel root model with
infinite axial conductance).

5 Discussion and conclusion

We analyzed the equation that describes water flow in a net-
work of root segments, which constitutes a root system ar-
chitecture (RSA) and reformulated it into a form that lends
itself to upscaling and to deriving simpler or parsimonious
root water uptake models.

In line with Couvreur et al. (2012), we deduced that the to-
tal uptake by a root system is a simple function of a weighted
soil water hydraulic head, and the weights are equal to the
water uptake by the RSA in a uniform soil water hydraulic
head field. The root system conductance, Krs, and the uptake
distribution for uniform soil water hydraulic head, i.e., the
standardized uptake fraction, SUF , are the two properties of
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Figure 10. Depth profiles of scaled up standardized uptake fractions (SUF s) (a, c, e) and sink term distribution normalized by the considered
soil layer thickness (2 cm) for a non-uniform soil water potential distribution (−3000 cm at the soil surface and 0 cm at the maximal root
depth) (b, d, f) for the maize (a, b), sunflower (c, d), and grass (e, f) root systems shown in Fig. 9. Approximations are calculated for the
parallel root with a bottom-up parameterization using the exact SUF andKrs, the big root model, and the parallel root model with a top-down
parameterization, with SUF estimated from the radial root segment conductivities. Sink terms are divided by the thickness of the soil layer,
2 cm, over which the root segment sink terms are summed.
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Figure 11. C7 matrices and ratios ofKcomp/Krs of the exact model
for the maize (a), sunflower (b), and grass (c) root systems.

the root system that define the relation between the transpi-
ration, the collar hydraulic head, and the distribution of the
soil water potentials. This implies that, for any distribution
of soil water hydraulic heads that leads to the same weighted
hydraulic head, transpiration rate and collar hydraulic head
are uniquely related.

We found that the uptake distribution is the sum of the
uptake for the case of a uniform soil water hydraulic head,
i.e., the weighted hydraulic head, and a correction or com-
pensation term that depends on the difference between the
local and weighted soil water hydraulic head. Unlike how it
is defined in other approaches (Simunek and Hopmans, 2009;
Jarvis, 2011), this compensation term does not depend on the
collar hydraulic head or transpiration rate, which is a con-
sequence of the compensation being a passive redistribution
process that is not influenced by the transpiration rate as long
as the soil water hydraulic heads do not change by the plant
water uptake.

When soil water hydraulic heads are assumed to be uni-
form in certain regions, e.g., in horizontal soil layers, the up-
scaling of the root water uptake model is trivial and leads
to the same form as the detailed model. Whether soil wa-
ter hydraulic heads remain uniform during root water uptake
depends on the spatial distribution of the root segments and
on the water redistribution in the soil that cancels out spa-
tial variations in root water uptake (Couvreur et al., 2014a).
Further work is needed to evaluate this assumption and to
develop upscaling methods when soil water hydraulic heads
cannot be assumed to be uniform in the horizontal direction.

The simplified root architectures that are used in land sur-
face models (LSMs) and big root and parallel root models are
special cases of RSAs, and the root water uptake models for
these architectures can be cast in the same form as the model
for a general RSA. For the parallel root model, we could
show that the root water uptake model is fully defined by the
Krs and SUF of the root system.Krs and SUF of the parallel
root system model that is used in a 1D LSM, assuming hor-
izontally uniform soil water hydraulic heads, can be derived
directly and exactly from upscaledKrs and SUF of a general
root system. The impact of the root segment connections and
their root hydraulic properties are directly represented in the
Krs and SUF , which can be calculated and scaled up with-
out making any simplifying assumptions about the RSA. The
bottom-up approach for parameterizing a parallel root model
from 3D RSA models is therefore straightforward. For the
big root model, we could not find such a simple relationship,
and upscaling was carried out by first deriving the effective
conductances of the big root segments based on the intrinsic
conductances of the root segments in a certain layer. From
the obtained big root model conductances, Krs and SUF

were derived. Since the derivation of big root conductances
cannot account exactly for the 3D RSA and its hydraulic
properties, the obtained Krs and SUF for the big root model
are approximations. Another approach that could be pursued
is to derive upscaledKrs and SUF directly from the 3D RSA
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(as was done for the parallel root model) and fit the conduc-
tances of the big root model. However, for each layer, only
one SUF value is available, whereas two conductances (ra-
dial and axial) need to be estimated for the big root segment
in that layer. This implies that more information about wa-
ter uptake by the 3D RSA is required, such as compensatory
uptake, in order to parameterize the big root model conduc-
tances. The big root model lends itself less to a bottom-up
parameterization approach than the parallel root model. Krs
and SUF of the parallel root model could also be estimated
following a top-down approach from intrinsic root segment
conductances without solving the 3D RSA model. But, then
it needs to be assumed that the axial root segment conduc-
tances are large so that they do not limit the uptake. This
assumption led, for the considered root segment hydraulic
properties, to an overestimation of the uptake by the distal
parts of the roots.

When the exact Krs and SUF are used in the parallel root
system model, the approximations in the parallel root sys-
tem model lead to an underestimation of redistribution of the
water uptake for non-uniform distributions of the soil wa-
ter hydraulic head. However, the typical distribution of radial
conductances along a root with lower radial conductances
in older more proximal root segments than in younger dis-
tal segments that result from aging of root tissues make that
the underestimation of the root water uptake redistribution by
the parallel root system model is not so important. Even the
redistribution of the uptake along a single long root with age-
dependent root segment conductances can be represented
well with a parallel root system model that uses the exactKrs
and SUF . The big root model overestimates the root water
uptake redistribution. But, the estimated root water uptake
profiles by this model seem to be affected more by the ap-
proximate estimation ofKrs and SUF from the root segment
hydraulic properties. We, therefore, conclude that bottom-
up approaches that start from 3D root architecture models
and that use age-dependent and/or root-order-dependent hy-
draulic properties of root segments are promising approaches
for parameterizing root water uptake modules of LSMs or
crop models. This approach is more reliable than the top-
down approach that starts from an upscaled root water up-
take model (big root or parallel root model) and derives the
effective parameters of these models from root segment hy-
draulic properties. Since we used information about root seg-
ment hydraulic properties and their orientation, the top-down
estimated parameters will deviate even more from the correct
parameters when proxies of the hydraulic RSA, which are
mostly limited to root length density distributions, are used.
An often-used argument against RSA models and the pro-
posed bottom-up approach is that they require a lot of input
parameters which are hardly available. Indeed, root density
distributions are mostly the only information that is available
about the RSA. However, root distributions could be used to
constrain parameters (Garré et al., 2012; Vansteenkiste et al.,
2014) or parameters groups (Pages et al., 2012; Morandage

et al., 2019) of RSA models. When information about distri-
butions of root types with depth is available, this information
could also be used to parameterize root architecture mod-
els, which provides additional information about the distri-
bution of root segment hydraulic properties when different
root types can be associated with different hydraulic proper-
ties (De Bauw et al., 2020). Since root architecture models
also simulate root growth, they provide information about
root segment age, which is related to root hydraulic prop-
erties and how they change over time. Root growth, but also
decay, can be modeled as a function of soil properties and soil
conditions (e.g., water content) so that the adaptation of root
systems to environmental conditions and two-way feedbacks
between root system dynamics and soil water content could
be represented (Somma et al., 1998). Next to the RSA archi-
tecture, also information about the root segment hydraulic
properties is required. Overviews of hydraulic properties of
different crops, herbaceous species, and trees are given in
Bouda et al. (2018) and Draye et al. (2010). But, variations
in root hydraulic properties between different root orders or
with root age can be very large (Rewald et al., 2011). Root
segment hydraulic properties could be derived either from di-
rect measurements on root segments (Schneider et al., 2017;
Zhu and Steudle, 1991; Meunier et al., 2018b), using infor-
mation on water fluxes in the soil–plant system (e.g., water
contents, collar water hydraulic heads, and stable water iso-
topes in the soil and plant xylem) in combination with inverse
modeling (Rothfuss and Javaux, 2017; Cai et al., 2018; Me-
unier et al., 2018a; Couvreur et al., 2020), or using anatom-
ical information about root tissues in combination with flow
modeling (Couvreur et al., 2018; Heymans et al., 2020). The
latter approach implies a further downscaling to tissue and
cellular levels, which could be used to characterize the vari-
ability in root segment properties efficiently. A framework
for such a multi-scale approach is presented in Passot et al.
(2019). With stochastic simulations of hydraulic RSAs, the
impact of the variability in root segment properties on root-
system-scale properties and upscaled root water uptake could
be derived using the approach presented in this paper.

The uptake profiles and their approximations by the sim-
plified models were calculated for a given non-uniform soil
water hydraulic head distribution. Even though the approxi-
mations of the uptake profiles are very good, it still requires
testing how this evolves over time and affects the dynamics
of root water uptake.

The upscaled root water uptake model was derived for a
RSA of a single plant or species. The uptake by several plants
from the same or from different species of which the roots
share the same soil profile with the same H soil could be rep-
resented by summing up the uptake profiles of the individual
plants. When the uptake can be described by a parallel root
model, Eq. (22), the uptake by a mixture of plants can also
be described by an equivalent parallel root model when the
SUF s of the different plants are the same. From Eq. (22), it
follows that the equivalent Krs for the mixture corresponds
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with the sum of the Krs values of the individual plants and
the equivalent collar hydraulic head with the Krs weighted
Hcollar of the different plants. The joint distribution of Krs
and Hcollar or of Krs and the plant transpiration are required
to calculate this weighted mean. For a mixture of plants with
a different SUF , it is not possible to derive such an equiva-
lent parallel root model that describes the root water uptake
profile of the mixture. In that case, the root water uptake pro-
file should be calculated separately for each species or “plant
functional” type which is characterized by a specific SUF .

In the current study, we considered a linear flow model in
the root system (i.e., root segment hydraulic conductances
are not a function of the water pressure heads). Cavitation in
the root xylem or changes in radial conductances due to, for
instance, aquaporin activation are not considered. Since we
focused on the root system hydraulic architecture, we did not
consider water potential gradients in the rhizosphere between
the bulk soil and the soil–root interface. These gradients can
be important and generate an additional non-linear resistance
to radial flow. It is still debated whether root xylem cavita-
tion or rhizosphere resistance triggers the non-linear system
behavior, but there seems to be more and more evidence that
rhizosphere properties trigger the non-linear behavior of the
soil–root system (Carminati et al., 2020). Most root water up-
take modules that consider root hydraulics in LSMs already
include non-linear rhizosphere resistances. How the root wa-
ter uptake model and its upscaled and simplified versions
that are based on a bottom-up analysis of the hydraulic root
architecture can be coupled with approaches that consider
non-linear resistances to radial flow in the soil (e.g., Gard-
ner and Ehlig, 1962; Hillel et al., 1976; de Jong van Lier et
al., 2008, 2013) requires further research. Different proposals
were made and implemented by Couvreur et al. (2014b) and
Meunier et al. (2018a), but a crucial aspect is how these ap-
proaches can be scaled up to 1D models. The non-linearities
render the diagonal conductivity matrix diag(K) a function
of the hydraulic heads Hcollar, Hx, and Hsoil. This implies
that the full set of (non-linear) equations must be solved it-
eratively to derive “exact” upscaled root system properties,
Krs, SUF every time Hcollar, Hx, and Hsoil change. For large
root systems, this approach would be unfeasible so that ap-
proximations are required. One approach would be to derive
functional relations between the upscaled properties and hy-
draulic head distributions, root and soil hydraulic properties,
and root architectures based on a large set of simulations and
advanced data analytics. Another approach would be to start
with simplifying assumptions that reduce the complexity of
the system. A simplification that we are currently testing ex-
ploits the linear behavior of the root hydraulics for upscaling
RSA first, using the approach developed in this paper, and
couples the upscaled equations subsequently to a non-linear
rhizosphere flow model.
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Appendix A

For a given root node i in the discretized root network, the
mass balance is as follows:

Kx[i](Hx[i] −Hx[prox(i)])

−

∑
j∈distal(i)

Kx[j ](Hx[j ] −Hx[i])

−Kr[i](Hsoil[i] −Hx[i])= 0, (A1)

where prox(i) represents the proximal (closer to the collar)
node of the segment connected to node i, and distal(i) is the
distal (further from the collar) node of a segment that is con-
nected to i. Note that Hx[prox(i)] may also be Hcollar when
node i is connected to the root collar. The flow from a soil
node i to xylem node i is as follows:

Kr[i](Hsoil[i] −Hx[i])=Q[i]. (A2)

The flow from the collar node is the transpiration rate T is as
follows:

−

∑
j∈distal(collar)

Kx[j ](Hx[j ] −Hcollar)=−T . (A3)

When we define dH[i] as the difference between the pressure
head of node i, which can also be a soil node, and its proxi-
mal node (note that each node is connected to only one prox-
imal node, except the collar which has no proximal node),
then it follows that:

IM · diag(K) ·dH=

−T0
Q

 , (A4)

where IM is the incidence matrix. The differences in pressure
heads dH can be expressed as follows:

dH= IMT

Hcollar
H x

H soil

 . (A5)

Plugging Eq. (A5) in (A4) leads to Eq. (4).
When the transpiration T and H soil are known,Hcollar and

H x can be obtained by solving the first Nroot+ 1 equations
of Eq. (4). Alternatively,Hcollar can be obtained directly from
Eq. (6). FromHcollar and H soil, H x can be derived from solv-
ing the second to theNroot+1 equations in Eq. (4). The xylem

hydraulic heads are obtained from the following:

HcollarC1+C2H x+C3H soil = 0 (A6)

H x =−C−1
2 [C3H soil+HcollarC1],

where

C= IM · diag(K) · IMT
collar (A7)

C1= C[i,j ] C1[i] = −Kx[i] (A8)
for i = 2, . . .,Nroot+ 1, j = 1 if prox(i)= collar

C2 = C[i,j ] C2[i, i] =Kx[i] (A9)
for i = 2, . . .,Nroot+ 1, +

∑
j∈distal(i)

Kx[j ] +Kr[i]

j = 2, . . .,Nroot+ 1 C2[i,j ] = −Kx[i]

if prox(i)= j

C2[i,j ] = −Kx[j ]

if j ∈ distal(i)

C3 = C[i,j ] C3[i, i+Nroot] = −Kr[i]

for i = 2, . . .,Nroot+ 1, (A10)
j =Nroot+ 2, . . .,2Nroot+ 1.

Note that C2 and C3 are symmetric matrices.
We can write the fluxes using the lower part of the C ma-

trix as follows:

Q= C[i =Nroot+ 2, . . .,2Nroot+ 1, j = 1, . . .,2Nroot+ 1]

×

Hcollar
H x

H soil

 . (A11)

This can be written out as follows:

Q= CL1Hcollar+CL2H x+CL3H soil, (A12)

where

CL1 = C[i,j ] for i =Nroot+ 2, . . .,2Nroot+ 1, j = 1 (A13)
CL2 = C[i,j ] for i =Nroot+ 2, . . .,2Nroot+ 1,

j = 2, . . .,Nroot+ 1 (A14)
CL3 = C[i,j ] for i =Nroot+ 2, . . .,2Nroot+ 1,

j =Nroot+ 2, . . .,2Nroot.+ 1 (A15)

Working out Eq. (A7), it is found that all entries in CL1 are
0, CL2 =−diag(Kr), and CL3 = diag(Kr), so that Eq. (A12)
corresponds with the following:

Q= diag(Kr)[H soil−H x], (A16)

which is the matrix form of Eq. (A2). Plugging Eq. (A6) into
the general form of Eq. (A12) gives the following:

C4H soil+C5Hcollar =Q(Nroot× 1), (A17)

Hydrol. Earth Syst. Sci., 25, 4835–4860, 2021 https://doi.org/10.5194/hess-25-4835-2021



J. Vanderborght et al.: Macroscopic representation of root hydraulics 4855

where

C4 =−CL2C−1
2 C3+CL3 (A18)

C5 = CL1−CL2C−1
2 C1. (A19)

Note that since C2 and C3 are symmetric matrices, C4 is also
a symmetric matrix, and C4 and C5 simplify due to the sim-
ple forms of CL1, CL2, and CL3 as follows:

C4 = diag(Kr)
[
I+C−1

2 C3
]
(Nroot×Nroot) (A20)

C5 = diag(Kr)C−1
2 C1(Nroot× 1). (A21)

When we consider the case of a uniform soil hydraulic head,
Heff, then we can write the following:

Q[i] =Heff
∑
j

C4[i,j ] +HcollarC5[i]. (A22)

WhenHeff =Hcollar, there is neither flow from the soil to the
collar nor flow through the root system from one soil node to
the other. From this, it follows that:∑
j

C4[i,j ] = −C5[i]. (A23)

If we consider now the total root water uptake,Qtot, which
is equal to the transpiration rate, T , then it follows that:

Qtot =
∑
i

Q[i] = −
∑
i

C5[i](Heff−Hcollar). (A24)

From this, we can derive the root system conductance Krs
directly from the following:

Krs =
Qtot

(Heff−Hcollar)
(A25)

Krs =−
∑
i

C5[i] =
∑
i

∑
j

C4[i,j ].

The standardized uptake fraction SUF[i], which is defined as
the fraction of the uptake by a root node to the total root water
uptake under uniform soil water hydraulic head, is related to
the matrix C4 and vector C5 as follows:

SUF[i] =
Q[i]

Qtot
=

∑
jC4[i,j ]∑

i

∑
jC4[i,j ]

=
C5[i]∑
iC5[i]

. (A26)

So, we can write the following for uniform soil water hy-
draulic heads:

Q[i] =KrsSUF[i](Heff−Hcollar). (A27)

For the general case that the soil water hydraulic heads are
not uniform, we can define the effective soil water hydraulic
head, Heff, as follows:

Heff = SUF TH soil. (A28)

After adding and subtracting C5Heff =Krs SUF Heff =Krs
SUF ·SUF TH soil in Eq. (A17), we obtain the following
equation for the root water uptake Q:

Q=KrsSUF (Heff−Hcollar)+C6H soil (A29)

C6 = C4−KrsSUF ·SUF T . (A30)

From the definitions of C6, C4, SUF , and Krs, it follows
that the sum of the elements in the rows of C6 is zero for all
rows. This implies that when C6 is multiplied with a Nroot×

1 vector with constant elements, a zero vector is obtained.
Therefore, we can reformulate the equation for the root water
uptake as follows:

Q=KrsSUF (Heff−Hcollar)+C6(H soil−H eff). (A31)

Since SUF TH soil =Heff, and since the sum of all elements
in SUF is one so that SUF TH eff =Heff, it follows also that:

Q=KrsSUF (Heff−Hcollar)+C4(H soil−H eff). (A32)

The definition of Heff (Eq. A28) makes the sums of all the
fluxes in the second term of Eq. (A31) and in the second term
of Eq. (A32) both equal to zero. Indeed, when considering
Eq. (A32), we can write the following:∑
i

∑
j

C4[i,j ]Hsoil[j ] (A33)

−

∑
i

(∑
j

C4[i,j ]

)(∑
i

SUF[i]Hsoil[i]

)
=

∑
i

∑
j

C4[i,j ]Hsoil[j ]

−

∑
i

∑
j

C4[i,j ]

(∑
i

∑
jC4[i,j ]Hsoil[i]∑
i

∑
jC4[i,j ]

)
=

∑
i

∑
j

C4[i,j ]Hsoil[j ] −
∑
i

∑
j

C4[i,j ]Hsoil[i]

= 0,

since C4[i,j ] = C4[j, i].
Equations (A31) and (A32) have a similar form to the

equation that was proposed by Couvreur et al. (2012) to
describe water uptake by a root network. In order to draw
the analogy and identify differences between the two ap-
proaches, we will discuss the nature of the C6 matrix and
how it can be transformed or approximated. From the defi-
nition of C6, it also follows that the sum of all the elements
in the vector C6(H soil−H eff) is zero. Therefore, this vector
represents the perturbations of the uptake 1Q at a certain
depth due to the perturbation of the soil water hydraulic head
at this depth compared to the uptake when the soil water hy-
draulic head is uniform in the root zone. When there is no net
uptake, i.e., whenHeff =Hcollar, then C6(H soil−H eff) repre-
sents the redistribution water fluxes through the root system
due to spatial variations in H soil. When we consider now that
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the soil water hydraulic head around node i is 1H higher
than the hydraulic head in all other nodes, then we can de-
fine 1Q[i] = kcomp[i]1H . kcomp[i] represents the compen-
satory root system conductance to transfer water from node i
towards all other nodes when there is a hydraulic head differ-
ence between the soil water at node i and the soil water next
to all other nodes in the root system. 1Q[i] and kcomp[i] are
related to the C6 matrix and SUF vector as follows:

1Q[i]=
(
(1−SUF[i])C6[i, i] −SUF[i]

∑
j 6=i

C6[i,j ]
)
1H (A34)

kcomp[i] =
1Q[i]

1H
(A35)

=

(
(1−SUF[i])C6[i, i] −SUF[i]

∑
j 6=i

C6[i,j ]
)

= C6[i, i],

since

C6[i, i] +
∑
j 6=i

C6[i,j ] = 0. (A36)

We assume now a root system in which all soil nodes are
connected via one radial and one axial resistance to the collar
node so that the overall resistance to flow from one soil–root
node to the collar is equal to the sum of the axial plus radial
resistances. We call this root system the parallel root system.
The radial and axial resistances for each soil node can how-
ever be different. Also a root system in which there is no re-
sistance to axial flow can be considered as a system in which
all soil nodes are connected directly to the root collar. But,
it is important to keep in mind that systems with a signifi-
cant axial root resistance can also be considered, as long as
there is a direct connection between the soil node and the root
collar without additional intermediate nodes that connect to
the soil. For instance, fibrous root systems with only primary
roots in which uptake only takes place near the root tip but
not at the more basal ends, can also be represented by this
root system model. For such a root system, it follows that:

kcomp[i] = SUF[i](1−SUF[i])Krs. (A37)

In the same vein, it can be deduced in the following that, for
such a parallel root system:

C6[i,j ]

C6[i, i]
= −

SUF[j ]
(1−SUF[i])

for i 6= j. (A38)

The j th column of the C6 matrix represents to what extent
water from the j th node can flow to the other nodes in the
system. For a parallel root system in which the flow must
pass through the collar node, the flow from node j to node
i is proportional to the conductance for the flow from node
j to the collar node and hence to SUF[j ]. Based on this, we
can write the C6 matrix for this root system as follows:

C6 = diag
(

C6[i, i]

1−SUF[i]

)
(I− ones ·SUFT) (A39)

= Krs diag(SUF[i])(I− ones ·SUF T),

where ones is the Nroot vector of all ones.
Since SUF TH soil = SUF TH eff =H eff, it follows that,

for a parallel root system:

C6(H soil−H eff)=Krs diag(SUF )(H soil−H eff). (A40)

This implies that we can obtain the following equation to
simulate root water uptake for the parallel root system:

Q= KrsSUF (Heff−Hcollar)

+Krsdiag(SUF )(H soil−H eff), (A41)

which is identical to the equation proposed by Couvreur et
al. (2012).

For a general root system, we can rewrite the general equa-
tion which takes a similar form to the equation that we ob-
tained for the parallel root system.

Q=KrsSUF (Heff−Hcollar) (A42)
+ diag(Kcomp)diag(SUF )C7(H soil−H eff)

Kcomp[i] =
C6[i, i]

SUF[i](1−SUF[i])
=

kcomp[i]

SUF[i](1−SUF[i])
(A43)

C7 = diag
(
(1−SUF[i])
C6[i, i]

)
C6+ ones ·SUF T. (A44)

For the parallel root system, C7 equals the identity matrix,
and Kcomp[i] equals Krs.
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