000904457 001__ 904457
000904457 005__ 20230815122835.0
000904457 0247_ $$2doi$$a10.5194/essd-13-4437-2021
000904457 0247_ $$2ISSN$$a1866-3508
000904457 0247_ $$2ISSN$$a1866-3516
000904457 0247_ $$2Handle$$a2128/29664
000904457 0247_ $$2altmetric$$aaltmetric:113425942
000904457 0247_ $$2WOS$$aWOS:000695652800001
000904457 037__ $$aFZJ-2021-06027
000904457 082__ $$a550
000904457 1001_ $$00000-0001-9757-8017$$aSchalge, Bernd$$b0$$eCorresponding author
000904457 245__ $$aPresentation and discussion of the high-resolution atmosphere–land-surface–subsurface simulation dataset of the simulated Neckar catchment for the period 2007–2015
000904457 260__ $$aKatlenburg-Lindau$$bCopernics Publications$$c2021
000904457 3367_ $$2DRIVER$$aarticle
000904457 3367_ $$2DataCite$$aOutput Types/Journal article
000904457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1650622535_30454
000904457 3367_ $$2BibTeX$$aARTICLE
000904457 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904457 3367_ $$00$$2EndNote$$aJournal Article
000904457 520__ $$aCoupled numerical models, which simulate water and energy fluxes in the subsurface–land-surface–atmosphere system in a physically consistent way, are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by such models may be regarded as a proxy of the real world, provided they are run at sufficiently high resolution and incorporate the most important processes. Such a simulated reality can be used to test hypotheses on the functioning of the coupled terrestrial system. Coupled simulation systems, however, face severe problems caused by the vastly different scales of the processes acting in and between the compartments of the terrestrial system, which also hinders comprehensive tests of their realism. We used the Terrestrial Systems Modeling Platform (TerrSysMP), which couples the meteorological Consortium for Small-scale Modeling (COSMO) model, the land-surface Community Land Model (CLM), and the subsurface ParFlow model, to generate a simulated catchment for a regional terrestrial system mimicking the Neckar catchment in southwest Germany, the virtual Neckar catchment. Simulations for this catchment are made for the period 2007–2015 and at a spatial resolution of 400 m for the land surface and subsurface and 1.1 km for the atmosphere. Among a discussion of modeling challenges, the model performance is evaluated based on observations covering several variables of the water cycle. We find that the simulated catchment behaves in many aspects quite close to observations of the real Neckar catchment, e.g., concerning atmospheric boundary-layer height, precipitation, and runoff. But also discrepancies become apparent, both in the ability of the model to correctly simulate some processes which still need improvement, such as overland flow, and in the realism of some observation operators like the satellite-based soil moisture sensors. The whole raw dataset is available for interested users. The dataset described here is available via the CERA database (Schalge et al., 2020): https://doi.org/10.26050/WDCC/Neckar_VCS_v1.
000904457 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904457 536__ $$0G:(GEPRIS)243358811$$aDFG project 243358811 - FOR 2131: Datenassimilation in terrestrischen Systemen $$c243358811$$x1
000904457 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904457 7001_ $$00000-0003-2873-7162$$aBaroni, Gabriele$$b1
000904457 7001_ $$0P:(DE-HGF)0$$aHaese, Barbara$$b2
000904457 7001_ $$0P:(DE-HGF)0$$aErdal, Daniel$$b3
000904457 7001_ $$0P:(DE-HGF)0$$aGeppert, Gernot$$b4
000904457 7001_ $$00000-0002-4596-946X$$aSaavedra, Pablo$$b5
000904457 7001_ $$0P:(DE-HGF)0$$aHaefliger, Vincent$$b6
000904457 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b7
000904457 7001_ $$0P:(DE-HGF)0$$aAttinger, Sabine$$b8
000904457 7001_ $$0P:(DE-HGF)0$$aKunstmann, Harald$$b9
000904457 7001_ $$00000-0003-3509-4118$$aCirpka, Olaf A.$$b10
000904457 7001_ $$0P:(DE-HGF)0$$aAment, Felix$$b11
000904457 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b12
000904457 7001_ $$00000-0002-9297-574X$$aNeuweiler, Insa$$b13
000904457 7001_ $$0P:(DE-HGF)0$$aHendricks Franssen, Harrie-Jan$$b14
000904457 7001_ $$00000-0003-3001-8642$$aSimmer, Clemens$$b15
000904457 773__ $$0PERI:(DE-600)2475469-9$$a10.5194/essd-13-4437-2021$$gVol. 13, no. 9, p. 4437 - 4464$$n9$$p4437 - 4464$$tEarth system science data$$v13$$x1866-3508$$y2021
000904457 8564_ $$uhttps://juser.fz-juelich.de/record/904457/files/essd-13-4437-2021.pdf$$yOpenAccess
000904457 909CO $$ooai:juser.fz-juelich.de:904457$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000904457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b12$$kFZJ
000904457 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904457 9141_ $$y2021
000904457 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904457 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904457 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEARTH SYST SCI DATA : 2019$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904457 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEARTH SYST SCI DATA : 2019$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904457 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904457 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000904457 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000904457 980__ $$ajournal
000904457 980__ $$aVDB
000904457 980__ $$aI:(DE-Juel1)IBG-3-20101118
000904457 980__ $$aI:(DE-Juel1)NIC-20090406
000904457 980__ $$aUNRESTRICTED
000904457 9801_ $$aFullTexts