000904468 001__ 904468
000904468 005__ 20220210164006.0
000904468 0247_ $$2doi$$a10.1016/j.apsoil.2021.104119
000904468 0247_ $$2ISSN$$a0929-1393
000904468 0247_ $$2ISSN$$a1873-0272
000904468 0247_ $$2WOS$$aWOS:000701612500017
000904468 037__ $$aFZJ-2021-06038
000904468 082__ $$a640
000904468 1001_ $$0P:(DE-HGF)0$$aHuang, Yaping$$b0
000904468 245__ $$aStoichiometric imbalance of soil carbon and nutrients drives microbial community structure under long-term fertilization
000904468 260__ $$aAmsterdam$$bElsevier$$c2021
000904468 3367_ $$2DRIVER$$aarticle
000904468 3367_ $$2DataCite$$aOutput Types/Journal article
000904468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642767135_11563
000904468 3367_ $$2BibTeX$$aARTICLE
000904468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904468 3367_ $$00$$2EndNote$$aJournal Article
000904468 500__ $$aEin Postprint steht leider nicht zur Verfügung
000904468 520__ $$aFertilization affects soil microbial community by altering soil organic carbon (C) and nutrients availability. However, it remains unclear how changes in stoichiometric C, N, and P ratios resulting from fertilization affect microbial community. We investigated a 26-year field experiment receiving inorganic fertilizers (N, NP, PK, and NPK), organic N combination (with manure and straw), natural recovery (fallow), and no fertilizer (control). The aim of this study was to explore the responses of microbial community to C: N:P stoichiometry in soil and microbial biomass of topsoil (0–20 cm) and subsoil (20–40 cm). Results showed that compared to control treatment, organic application increased the ratio of fungi to bacteria (F:B) in topsoil and gram-negative bacteria to gram-positive bacteria (G−:G+) in subsoil. However, application of inorganic decreased both the F: B and G−:G+ ratio in topsoil. Increasing soil C, N and P availability resulted from inorganic fertilizers and organic combination fertilization caused stoichiometric imbalance between soil and microbial biomass. As a result, the F:B and G−:G+ ratio were positively related to C:N imbalance but negatively associated with N:P imbalance in topsoil. Redundancy analysis (RDA) showed that main factors regulating microbial community were pH, C:P and N:P imbalances in topsoil, whereas TDN, N:P imbalance, DOC and soil C:N in subsoil. Furthermore, C:P and N:P imbalance explained 16.4% in topsoil, and N:P imbalance explained 22.0% in subsoil of microbial community variation. These results reveal the shifts of soil microbial community are driven by changes in soil pH and C, N and P stoichiometric imbalance from long-term fertilization.
000904468 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904468 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904468 7001_ $$0P:(DE-Juel1)180353$$aWang, Qiqi$$b1$$ufzj
000904468 7001_ $$0P:(DE-HGF)0$$aZhang, Wenju$$b2
000904468 7001_ $$0P:(DE-HGF)0$$aZhu, Ping$$b3
000904468 7001_ $$0P:(DE-HGF)0$$aXiao, Qiong$$b4
000904468 7001_ $$0P:(DE-HGF)0$$aWang, Chuanjie$$b5
000904468 7001_ $$0P:(DE-HGF)0$$aWu, Lei$$b6
000904468 7001_ $$0P:(DE-HGF)0$$aTian, Yanfang$$b7
000904468 7001_ $$0P:(DE-HGF)0$$aXu, Minggang$$b8
000904468 7001_ $$0P:(DE-HGF)0$$aGunina, Anna$$b9
000904468 773__ $$0PERI:(DE-600)2013020-X$$a10.1016/j.apsoil.2021.104119$$gVol. 168, p. 104119 -$$p104119 -$$tApplied soil ecology$$v168$$x0929-1393$$y2021
000904468 909CO $$ooai:juser.fz-juelich.de:904468$$pVDB
000904468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180353$$aForschungszentrum Jülich$$b1$$kFZJ
000904468 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904468 9141_ $$y2021
000904468 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000904468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SOIL ECOL : 2019$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000904468 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000904468 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000904468 980__ $$ajournal
000904468 980__ $$aVDB
000904468 980__ $$aI:(DE-Juel1)IBG-3-20101118
000904468 980__ $$aUNRESTRICTED