001     904475
005     20220224125211.0
024 7 _ |a 10.1039/D1GC00763G
|2 doi
024 7 _ |a 1463-9262
|2 ISSN
024 7 _ |a 1463-9270
|2 ISSN
024 7 _ |a 2128/30400
|2 Handle
024 7 _ |a altmetric:104193509
|2 altmetric
024 7 _ |a WOS:000644497200001
|2 WOS
037 _ _ |a FZJ-2021-06045
082 _ _ |a 540
100 1 _ |a Cui, Haiyang
|0 0000-0001-8360-0447
|b 0
245 _ _ |a CompassR-guided recombination unlocks design principles to stabilize lipases in ILs with minimal experimental efforts
260 _ _ |a Cambridge
|c 2021
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642766636_21910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biocatalysis in ionic liquids (ILs) has gained enormous attention for the production of biodiesel, sugar esters, and pharmaceuticals. However, hydrophilic IL interaction with enzymes often results in reduced activity or even inactivation. In this report, we prove that intrinsic lipase stability and preservation of hydration shells of Bacillus subtilis lipase A (BSLA) are two synergistic design principles to retain enzymatic activity in ILs. After in silico screening of nine beneficial amino acid positions by the CompassR rule (in total, 172 variants), we rationally designed two variants, to be constructed by site-directed mutagenesis, and three libraries by site-saturation mutagenesis. With minimal experiment effort, we identified three all-around variants towards four [BMIM]-based ILs. Remarkably, the variant M1a F17S/V54K/D64N/D91E/G155N had 6.7-fold higher resistance against 40% (v/v) [BMIM]Cl, 5.6-fold in 80% (v/v) [BMIM]Br, 5.0-fold in 30% (v/v) [BMIM][TfO], and 2.7-fold in 10% (v/v) [BMIM]I compared to wild-type BSLA, respectively, while showing 1.9-fold improvement in specific activity. Computational analysis of molecular dynamics and thermodynamic stability analysis of the variants revealed the molecular basis for the resistant variants M1a and M1b as the synergistic enhancement of protein stability (ΔΔGfold ranging from −4.26 to −4.80 kcal mol−1) and increased hydration shells around the substitutions in the four ILs (up to 1.7-fold). These design principles and the gained molecular knowledge not only open the door to direct experimentalists for rationally designing promising IL-resistant enzymes, but also provide new insights into enzymatic catalysis in ILs.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pramanik, Subrata
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 2
700 1 _ |a Davari, Mehdi D.
|0 0000-0003-0089-7156
|b 3
700 1 _ |a Schwaneberg, Ulrich
|0 0000-0003-4026-701X
|b 4
|e Corresponding author
773 _ _ |a 10.1039/D1GC00763G
|g Vol. 23, no. 9, p. 3474 - 3486
|0 PERI:(DE-600)2006274-6
|n 9
|p 3474 - 3486
|t Green chemistry
|v 23
|y 2021
|x 1463-9262
856 4 _ |u https://juser.fz-juelich.de/record/904475/files/d1gc00763g.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/904475/files/Compass-R-guided.pdf
909 C O |o oai:juser.fz-juelich.de:904475
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0001-8360-0447
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131457
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0003-0089-7156
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 0000-0003-4026-701X
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GREEN CHEM : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GREEN CHEM : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21