000904478 001__ 904478
000904478 005__ 20230123101852.0
000904478 0247_ $$2doi$$a10.1007/s00792-021-01238-9
000904478 0247_ $$2ISSN$$a1431-0651
000904478 0247_ $$2ISSN$$a1433-4909
000904478 0247_ $$2Handle$$a2128/30744
000904478 0247_ $$2pmid$$a34196829
000904478 0247_ $$2WOS$$aWOS:000668834700002
000904478 037__ $$aFZJ-2021-06048
000904478 082__ $$a570
000904478 1001_ $$0P:(DE-HGF)0$$aFauziah Ma’ruf, Ilma$$b0
000904478 245__ $$aHeterologous gene expression and characterization of two serine hydroxymethyltransferases from Thermoplasma acidophilum
000904478 260__ $$aTokyo$$bSpringer$$c2021
000904478 3367_ $$2DRIVER$$aarticle
000904478 3367_ $$2DataCite$$aOutput Types/Journal article
000904478 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645197744_1343
000904478 3367_ $$2BibTeX$$aARTICLE
000904478 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904478 3367_ $$00$$2EndNote$$aJournal Article
000904478 520__ $$aSerine hydroxymethyltransferase (SHMT) and threonine aldolase are classified as fold type I pyridoxal-5’-phosphate-dependent enzymes and engaged in glycine biosynthesis from serine and threonine, respectively. The acidothermophilic archaeon Thermoplasma acidophilum possesses two distinct SHMT genes, while there is no gene encoding threonine aldolase in its genome. In the present study, the two SHMT genes (Ta0811 and Ta1509) were heterologously expressed in Escherichia coli and Thermococcus kodakarensis, respectively, and biochemical properties of their products were investigated. Ta1509 protein exhibited dual activities to catalyze tetrahydrofolate (THF)-dependent serine cleavage and THF-independent threonine cleavage, similar to other SHMTs reported to date. In contrast, the Ta0811 protein lacks amino acid residues involved in the THF-binding motif and catalyzes only the THF-independent cleavage of threonine. Kinetic analysis revealed that the threonine-cleavage activity of the Ta0811 protein was 3.5 times higher than the serine-cleavage activity of Ta1509 protein. In addition, mRNA expression of Ta0811 gene in T. acidophilum was approximately 20 times more abundant than that of Ta1509. These observations suggest that retroaldol cleavage of threonine, mediated by the Ta0811 protein, has a major role in glycine biosynthesis in T. acidophilum.
000904478 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904478 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904478 7001_ $$0P:(DE-HGF)0$$aSasaki, Yuka$$b1
000904478 7001_ $$0P:(DE-HGF)0$$aKerbs, Anastasia$$b2
000904478 7001_ $$0P:(DE-Juel1)184778$$aNießer, Jochen$$b3
000904478 7001_ $$0P:(DE-HGF)0$$aSato, Yu$$b4
000904478 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Hironori$$b5
000904478 7001_ $$0P:(DE-HGF)0$$aOkano, Kenji$$b6
000904478 7001_ $$0P:(DE-HGF)0$$aKitani, Shigeru$$b7
000904478 7001_ $$0P:(DE-HGF)0$$aRestiawaty, Elvi$$b8
000904478 7001_ $$0P:(DE-HGF)0$$aAkhmaloka$$b9
000904478 7001_ $$00000-0001-9069-7574$$aHonda, Kohsuke$$b10$$eCorresponding author
000904478 773__ $$0PERI:(DE-600)1481278-2$$a10.1007/s00792-021-01238-9$$gVol. 25, no. 4, p. 393 - 402$$n4$$p393 - 402$$tExtremophiles$$v25$$x1431-0651$$y2021
000904478 8564_ $$uhttps://juser.fz-juelich.de/record/904478/files/FauziahMaRuf2021_Article_HeterologousGeneExpressionAndC.pdf$$yRestricted
000904478 8564_ $$uhttps://juser.fz-juelich.de/record/904478/files/Manuscript%20Final.pdf$$yPublished on 2021-07-01. Available in OpenAccess from 2022-07-01.$$zStatID:(DE-HGF)0510
000904478 909CO $$ooai:juser.fz-juelich.de:904478$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184778$$aForschungszentrum Jülich$$b3$$kFZJ
000904478 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904478 9141_ $$y2022
000904478 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904478 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXTREMOPHILES : 2019$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000904478 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904478 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904478 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904478 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000904478 980__ $$ajournal
000904478 980__ $$aVDB
000904478 980__ $$aUNRESTRICTED
000904478 980__ $$aI:(DE-Juel1)IBG-1-20101118
000904478 9801_ $$aFullTexts