000904479 001__ 904479
000904479 005__ 20220224125213.0
000904479 0247_ $$2doi$$a10.1021/acssuschemeng.1c02194
000904479 0247_ $$2Handle$$a2128/30506
000904479 0247_ $$2WOS$$aWOS:000675465900021
000904479 037__ $$aFZJ-2021-06049
000904479 082__ $$a540
000904479 1001_ $$00000-0001-9951-5810$$aGausmann, Marcel$$b0$$eCorresponding author
000904479 245__ $$aElectrochemical pH-T-Swing Separation of Itaconic Acid for Zero Salt Waste Downstream Processing
000904479 260__ $$aWashington, DC$$bACS Publ.$$c2021
000904479 3367_ $$2DRIVER$$aarticle
000904479 3367_ $$2DataCite$$aOutput Types/Journal article
000904479 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643026817_32038
000904479 3367_ $$2BibTeX$$aARTICLE
000904479 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904479 3367_ $$00$$2EndNote$$aJournal Article
000904479 520__ $$aBiotechnological production of platform chemicals such as (di)carboxylic acids poses economic and environmental challenges in downstream processing. With conventional downstream processes, waste salts are produced in more than equimolar amounts with the product. Therefore, lean waste-free downstream processes are needed to compete with petrochemical products. This work presents a joint development of a biobased production route for itaconic acid featuring low pH value fermentation, reactive extraction, and electrochemical product recovery. By the implementation of an electrochemical pH-T-swing separation process, biobased itaconic acid with a purity of more than 99% was recovered in the crystalline form from the fermentation broth. Based on the measured liquid–liquid and solid–liquid equilibrium, a feasible overall yield of >90% for itaconic acid recovery was calculated for the proposed downstream process. An electrochemical protonation efficiency of 96.2% was determined when the pH-shift electrolysis operates within the buffer range of the itaconic acid. The proposed process eliminates the salt waste from pH-adjusting steps and can perspectively operate with electricity costs being lower than costs for sulfuric acid and sodium hydroxide elsewise required for the pH-swing steps.
000904479 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904479 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904479 7001_ $$0P:(DE-HGF)0$$aKocks, Christian$$b1
000904479 7001_ $$0P:(DE-HGF)0$$aPastoors, Johannes$$b2
000904479 7001_ $$0P:(DE-HGF)0$$aBüchs, Jochen$$b3
000904479 7001_ $$0P:(DE-Juel1)176653$$aWierckx, Nick$$b4
000904479 7001_ $$00000-0001-6551-5695$$aJupke, Andreas$$b5
000904479 773__ $$0PERI:(DE-600)2695697-4$$a10.1021/acssuschemeng.1c02194$$gVol. 9, no. 28, p. 9336 - 9347$$n28$$p9336 - 9347$$tACS sustainable chemistry & engineering$$v9$$x2168-0485$$y2021
000904479 8564_ $$uhttps://juser.fz-juelich.de/record/904479/files/ACS_Manuscript_Electrochemical_pH_T_swing_extraction_of_itaconic_acid.pdf$$yPublished on 2021-07-08. Available in OpenAccess from 2022-07-08.$$zStatID:(DE-HGF)0510
000904479 8564_ $$uhttps://juser.fz-juelich.de/record/904479/files/acssuschemeng.1c02194.pdf$$yRestricted
000904479 909CO $$ooai:juser.fz-juelich.de:904479$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904479 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176653$$aForschungszentrum Jülich$$b4$$kFZJ
000904479 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904479 9141_ $$y2021
000904479 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904479 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SUSTAIN CHEM ENG : 2019$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SUSTAIN CHEM ENG : 2019$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904479 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904479 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000904479 980__ $$ajournal
000904479 980__ $$aVDB
000904479 980__ $$aUNRESTRICTED
000904479 980__ $$aI:(DE-Juel1)IBG-1-20101118
000904479 9801_ $$aFullTexts