001     904484
005     20240223125854.0
024 7 _ |a 10.1016/j.chroma.2021.462669
|2 doi
024 7 _ |a 0021-9673
|2 ISSN
024 7 _ |a 0376-737x
|2 ISSN
024 7 _ |a 0378-4355
|2 ISSN
024 7 _ |a 2128/30439
|2 Handle
024 7 _ |a altmetric:117797825
|2 altmetric
024 7 _ |a pmid:34800897
|2 pmid
024 7 _ |a WOS:000720438400004
|2 WOS
037 _ _ |a FZJ-2021-06054
082 _ _ |a 540
100 1 _ |a Kumar, Vijesh
|0 P:(DE-Juel1)161191
|b 0
245 _ _ |a Robust mechanistic modeling of protein ion-exchange chromatography
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642778328_21862
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mechanistic models for ion-exchange chromatography of proteins are well-established and a broad consensus exists on most aspects of the detailed mathematical and physical description. A variety of specializations of these models can typically capture the general locations of elution peaks, but discrepancies are often observed in peak position and shape, especially if the column load level is in the non-linear range. These discrepancies may prevent the use of models for high-fidelity predictive applications such as process characterization and development of high-purity and -productivity process steps. Our objective is to develop a sufficiently robust mechanistic framework to make both conventional and anomalous phenomena more readily predictable using model parameters that can be evaluated based on independent measurements or well-accepted correlations. This work demonstrates the implementation of this approach for industry-relevant case studies using both a model protein, lysozyme, and biopharmaceutical product monoclonal antibodies, using cation-exchange resins with a variety of architectures (SP Sepharose FF, Fractogel EMD SO3−, Capto S and Toyopearl SP650M). The modeling employs the general rate model with the extension of the surface diffusivity to be variable, as a function of ionic strength or binding affinity. A colloidal isotherm that accounts for protein-surface and protein-protein interactions independently was used, with each characterized by a parameter determined as a function of ionic strength and pH. Both of these isotherm parameters, along with the variable surface diffusivity, were successfully estimated using breakthrough data at different ionic strengths and pH. The model developed was used to predict overloads and elution curves with high accuracy for a wide variety of gradients and different flow rates and protein loads. The in-silico methodology used in this work for parameter estimation, along with a minimal amount of experimental data, can help the industry adopt model-based optimization and control of preparative ion-exchange chromatography with high accuracy.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
542 _ _ |i 2021-12-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2021-12-01
|2 Crossref
|u https://doi.org/10.15223/policy-017
542 _ _ |i 2021-12-01
|2 Crossref
|u https://doi.org/10.15223/policy-037
542 _ _ |i 2021-12-01
|2 Crossref
|u https://doi.org/10.15223/policy-012
542 _ _ |i 2021-12-01
|2 Crossref
|u https://doi.org/10.15223/policy-029
542 _ _ |i 2021-12-01
|2 Crossref
|u https://doi.org/10.15223/policy-004
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Leweke, Samuel
|0 P:(DE-Juel1)139548
|b 1
700 1 _ |a Heymann, William
|0 P:(DE-Juel1)165915
|b 2
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 3
700 1 _ |a Schlegel, Fabrice
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Westerberg, Karin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lenhoff, Abraham M.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 1 8 |a 10.1016/j.chroma.2021.462669
|b Elsevier BV
|d 2021-12-01
|p 462669
|3 journal-article
|2 Crossref
|t Journal of Chromatography A
|v 1660
|y 2021
|x 0021-9673
773 _ _ |a 10.1016/j.chroma.2021.462669
|g Vol. 1660, p. 462669 -
|0 PERI:(DE-600)1491247-8
|p 462669
|t Journal of chromatography / A
|v 1660
|y 2021
|x 0021-9673
856 4 _ |u https://juser.fz-juelich.de/record/904484/files/Kumar%20et%20al%20CHROMA-S-21-01429.pdf
|y Published on 2021-11-02. Available in OpenAccess from 2023-11-02.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:904484
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)139548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165915
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129081
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHROMATOGR A : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
999 C 5 |a 10.1146/annurev-chembioeng-102419-125430
|9 -- missing cx lookup --
|1 Kumar
|p 235 -
|2 Crossref
|t Annu. Rev. Chem. Biomol. Eng.
|v 11
|y 2020
999 C 5 |a 10.1016/j.trac.2017.07.021
|9 -- missing cx lookup --
|1 Mattrey
|p 36 -
|2 Crossref
|t TrAC Trends Anal. Chem.
|v 95
|y 2017
999 C 5 |a 10.1016/j.compchemeng.2019.106532
|1 Rischawy
|9 -- missing cx lookup --
|2 Crossref
|t Comput. Chem. Eng.
|v 130
|y 2019
999 C 5 |a 10.1016/j.tibtech.2020.05.008
|9 -- missing cx lookup --
|1 Smiatek
|p 1141 -
|2 Crossref
|t Trends Biotechnol
|v 38
|y 2020
999 C 5 |a 10.1016/j.cocis.2018.12.004
|9 -- missing cx lookup --
|1 Quan
|p 74 -
|2 Crossref
|t Curr. Opin. Colloid Interface Sci.
|v 41
|y 2019
999 C 5 |a 10.1016/j.tibtech.2014.02.001
|9 -- missing cx lookup --
|1 Hanke
|p 210 -
|2 Crossref
|t Trends Biotechnol
|v 32
|y 2014
999 C 5 |a 10.1016/j.chroma.2016.04.018
|9 -- missing cx lookup --
|1 Guélat
|p 82 -
|2 Crossref
|t J. Chromatogr. A.
|v 1447
|y 2016
999 C 5 |a 10.1002/biot.201500089
|9 -- missing cx lookup --
|1 Creasy
|p 1400 -
|2 Crossref
|t Biotechnol. J.
|v 10
|y 2015
999 C 5 |1 Michel
|y 2005
|2 Crossref
|o Michel 2005
999 C 5 |a 10.1016/j.compchemeng.2010.03.008
|9 -- missing cx lookup --
|1 von Lieres
|p 1180 -
|2 Crossref
|t Comput. Chem. Eng.
|v 34
|y 2010
999 C 5 |1 Ruthven
|y 1984
|2 Crossref
|o Ruthven 1984
999 C 5 |a 10.1016/S1385-8947(00)00197-2
|9 -- missing cx lookup --
|1 Lan
|p 179 -
|2 Crossref
|t Chem. Eng. J.
|v 81
|y 2001
999 C 5 |a 10.1002/aic.690381212
|9 -- missing cx lookup --
|1 Brooks
|p 1969 -
|2 Crossref
|t AIChE J
|v 38
|y 1992
999 C 5 |a 10.1016/j.chroma.2015.11.062
|9 -- missing cx lookup --
|1 Kumar
|p 140 -
|2 Crossref
|t J. Chromatogr. A.
|v 1426
|y 2015
999 C 5 |a 10.1002/biot.201700286
|1 Kumar
|9 -- missing cx lookup --
|2 Crossref
|t Biotechnol. J.
|v 12
|y 2017
999 C 5 |a 10.1002/jssc.201301007
|9 -- missing cx lookup --
|1 Schmidt
|p 5 -
|2 Crossref
|t J. Sep. Sci.
|v 37
|y 2014
999 C 5 |a 10.1002/jbm.a.35235
|9 -- missing cx lookup --
|1 Latour
|p 949 -
|2 Crossref
|t J. Biomed. Mater. Res. - Part A.
|v 103
|y 2015
999 C 5 |a 10.1016/j.chroma.2017.09.039
|9 -- missing cx lookup --
|1 Diedrich
|p 60 -
|2 Crossref
|t J. Chromatogr. A.
|v 1525
|y 2017
999 C 5 |a 10.1021/la981199k
|9 -- missing cx lookup --
|1 Oberholzer
|p 3905 -
|2 Crossref
|t Langmuir
|v 15
|y 1999
999 C 5 |a 10.1021/jp0754233
|9 -- missing cx lookup --
|1 Xu
|p 1028 -
|2 Crossref
|t J. Phys. Chem. B.
|v 112
|y 2008
999 C 5 |a 10.1016/j.chroma.2010.06.064
|9 -- missing cx lookup --
|1 Guélat
|p 5610 -
|2 Crossref
|t J. Chromatogr. A.
|v 1217
|y 2010
999 C 5 |a 10.1016/j.chroma.2012.06.081
|9 -- missing cx lookup --
|1 Guélat
|p 32 -
|2 Crossref
|t J. Chromatogr. A.
|v 1253
|y 2012
999 C 5 |a 10.1002/biot.201800132
|1 Creasy
|9 -- missing cx lookup --
|2 Crossref
|t Biotechnol. J.
|v 14
|y 2019
999 C 5 |a 10.1021/la00028a015
|9 -- missing cx lookup --
|1 Roth
|p 962 -
|2 Crossref
|t Langmuir
|v 9
|y 1993
999 C 5 |a 10.1016/j.chroma.2012.02.004
|9 -- missing cx lookup --
|1 Osberghaus
|p 54 -
|2 Crossref
|t J. Chromatogr. A.
|v 1233
|y 2012
999 C 5 |a 10.1016/j.compchemeng.2013.04.013
|9 -- missing cx lookup --
|1 Borg
|p 148 -
|2 Crossref
|t Comput. Chem. Eng.
|v 55
|y 2013
999 C 5 |a 10.1016/j.chroma.2009.06.082
|9 -- missing cx lookup --
|1 Xu
|p 6177 -
|2 Crossref
|t J. Chromatogr. A.
|v 1216
|y 2009
999 C 5 |a 10.1002/bit.260250516
|9 -- missing cx lookup --
|1 Yamamoto
|p 1373 -
|2 Crossref
|t Biotechnol. Bioeng.
|v 25
|y 1983
999 C 5 |a 10.1016/j.chroma.2015.08.025
|9 -- missing cx lookup --
|1 Rüdt
|p 68 -
|2 Crossref
|t J. Chromatogr. A.
|v 1413
|y 2015
999 C 5 |a 10.1016/0009-2509(81)80043-7
|9 -- missing cx lookup --
|1 Radeke
|p 11 -
|2 Crossref
|t Chem. Eng. Sci.
|v 36
|y 1981
999 C 5 |a 10.1016/j.compchemeng.2013.02.008
|9 -- missing cx lookup --
|1 Liu
|p 153 -
|2 Crossref
|t Comput. Chem. Eng.
|v 53
|y 2013
999 C 5 |a 10.1002/aic.690420507
|9 -- missing cx lookup --
|1 Ma
|p 1244 -
|2 Crossref
|t AIChE J
|v 42
|y 1996
999 C 5 |a 10.1016/j.chroma.2009.03.044
|9 -- missing cx lookup --
|1 Stone
|p 4465 -
|2 Crossref
|t J. Chromatogr. A.
|v 1216
|y 2009
999 C 5 |a 10.1016/j.chroma.2011.02.020
|9 -- missing cx lookup --
|1 Traylor
|p 2222 -
|2 Crossref
|t J. Chromatogr. A.
|v 1218
|y 2011
999 C 5 |a 10.1021/la8004163
|9 -- missing cx lookup --
|1 Lenhoff
|p 5991 -
|2 Crossref
|t Langmuir
|v 24
|y 2008
999 C 5 |a 10.1073/pnas.0237084100
|9 -- missing cx lookup --
|1 Dziennik
|p 420 -
|2 Crossref
|t Proc. Natl. Acad. Sci. U. S. A.
|v 100
|y 2003
999 C 5 |a 10.1021/bp960021q
|9 -- missing cx lookup --
|1 Weaver
|p 342 -
|2 Crossref
|t Biotechnol. Prog.
|v 12
|y 1996
999 C 5 |a 10.1002/btpr.3081
|9 -- missing cx lookup --
|1 Saleh
|p e3081 -
|2 Crossref
|t Biotechnol. Prog.
|v 37
|y 2021
999 C 5 |a 10.1016/j.chroma.2018.11.074
|9 -- missing cx lookup --
|1 Khanal
|p 40 -
|2 Crossref
|t J. Chromatogr. A.
|v 1586
|y 2019
999 C 5 |a 10.1016/S0021-9673(00)00420-9
|9 -- missing cx lookup --
|1 DePhillips
|p 39 -
|2 Crossref
|t J. Chromatogr. A.
|v 883
|y 2000
999 C 5 |1 Carta
|y 2020
|2 Crossref
|o Carta 2020
999 C 5 |a 10.1016/j.compchemeng.2018.02.025
|9 -- missing cx lookup --
|1 Leweke
|p 274 -
|2 Crossref
|t Comput. Chem. Eng.
|v 113
|y 2018
999 C 5 |a 10.1016/j.chroma.2021.462397
|1 Briskot
|9 -- missing cx lookup --
|2 Crossref
|t J. Chromatogr. A.
|v 1653
|y 2021
999 C 5 |a 10.1016/j.ab.2003.10.031
|9 -- missing cx lookup --
|1 Hartmann
|p 227 -
|2 Crossref
|t Anal. Biochem.
|v 325
|y 2004
999 C 5 |a 10.1021/bp00021a006
|9 -- missing cx lookup --
|1 Frey
|p 273 -
|2 Crossref
|t Biotechnol. Prog.
|v 9
|y 1993
999 C 5 |1 Satterfield
|y 1970
|2 Crossref
|o Satterfield 1970
999 C 5 |a 10.1073/pnas.1921499117
|9 -- missing cx lookup --
|1 Khanal
|p 7004 -
|2 Crossref
|t Proc. Natl. Acad. Sci. U. S. A.
|v 117
|y 2020
999 C 5 |a 10.1002/aic.690470710
|9 -- missing cx lookup --
|1 Wesselingh
|p 1571 -
|2 Crossref
|t AIChE J
|v 47
|y 2001
999 C 5 |a 10.1002/bit.22145
|9 -- missing cx lookup --
|1 Zydney
|p 1131 -
|2 Crossref
|t Biotechnol. Bioeng.
|v 102
|y 2009
999 C 5 |a 10.1006/jcis.1998.5625
|9 -- missing cx lookup --
|1 Chen
|p 354 -
|2 Crossref
|t J. Colloid Interface Sci.
|v 205
|y 1998
999 C 5 |a 10.1002/btpr.3065
|9 -- missing cx lookup --
|1 Roberts
|p e3065 -
|2 Crossref
|t Biotechnol. Prog.
|v 37
|y 2021
999 C 5 |a 10.1016/j.chroma.2017.05.021
|9 -- missing cx lookup --
|1 Bhambure
|p 55 -
|2 Crossref
|t J. Chromatogr. A.
|v 1506
|y 2017
999 C 5 |a 10.1016/S0021-9673(01)01275-4
|9 -- missing cx lookup --
|1 DePhillips
|p 57 -
|2 Crossref
|t J. Chromatogr. A.
|v 933
|y 2001
999 C 5 |a 10.1002/aic.690381212
|9 -- missing cx lookup --
|1 Brooks
|p 1969 -
|2 Crossref
|t AIChE J
|v 38
|y 1992


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21