001     904485
005     20220210164007.0
024 7 _ |a 10.1021/jacs.1c03409
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 2128/30440
|2 Handle
024 7 _ |a altmetric:111171673
|2 altmetric
024 7 _ |a pmid:34347468
|2 pmid
024 7 _ |a WOS:000686555000018
|2 WOS
037 _ _ |a FZJ-2021-06055
082 _ _ |a 540
100 1 _ |a Maia, Raiza N. A.
|0 0000-0003-1463-0102
|b 0
245 _ _ |a Real-Time Tracking of Proton Transfer from the Reactive Cysteine to the Flavin Chromophore of a Photosensing Light Oxygen Voltage Protein
260 _ _ |a Washington, DC
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642778578_18986
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a LOV (light oxygen voltage) proteins are photosensors ubiquitous to all domains of life. A variant of the short LOV protein from Dinoroseobacter shibae (DsLOV) exhibits an exceptionally fast photocycle. We performed time-resolved molecular spectroscopy on DsLOV-M49S and characterized the formation of the thio-adduct state with a covalent bond between the reactive cysteine (C72) and C4a of the FMN. By use of a tunable quantum cascade laser, the weak absorption change of the vibrational band of S–H stretching vibration of C57 was resolved with a time resolution of 10 ns. Deprotonation of C72 proceeded with a time constant of 12 μs which tallies the rise of the thio-adduct state. These results provide valuable information for the mechanistic interpretation of light-induced structural changes in LOV domains, which involves the choreographed sequence of proton transfers, changes in electron density distributions, spin alterations of the latter, and transient bond formation and breakage. Such molecular insight will help develop new optogenetic tools based on flavin photoreceptors.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ehrenberg, David
|0 0000-0002-7582-1511
|b 1
700 1 _ |a Oldemeyer, Sabine
|0 0000-0001-7139-7218
|b 2
700 1 _ |a Knieps-Grünhagen, Esther
|0 P:(DE-Juel1)141796
|b 3
700 1 _ |a Krauss, Ulrich
|0 P:(DE-Juel1)131482
|b 4
700 1 _ |a Heberle, Joachim
|0 0000-0001-6321-2615
|b 5
|e Corresponding author
773 _ _ |a 10.1021/jacs.1c03409
|g Vol. 143, no. 32, p. 12535 - 12542
|0 PERI:(DE-600)1472210-0
|n 32
|p 12535 - 12542
|t Journal of the American Chemical Society
|v 143
|y 2021
|x 0002-7863
856 4 _ |u https://juser.fz-juelich.de/record/904485/files/jacs.1c03409.pdf
856 4 _ |y Published on 2021-08-04. Available in OpenAccess from 2022-08-04.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/904485/files/real-time%20tracking.pdf
909 C O |o oai:juser.fz-juelich.de:904485
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-1463-0102
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-7582-1511
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0001-7139-7218
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)141796
910 1 _ |a Institut für Molekulare Enzymtechnologie
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)141796
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131482
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0001-6321-2615
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2019
|d 2021-01-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21