000904495 001__ 904495
000904495 005__ 20220103172027.0
000904495 0247_ $$2doi$$a10.1093/jxb/erab039
000904495 0247_ $$2ISSN$$a0022-0957
000904495 0247_ $$2ISSN$$a1460-2431
000904495 0247_ $$2Handle$$a2128/29640
000904495 0247_ $$2altmetric$$aaltmetric:99310293
000904495 0247_ $$2pmid$$apmid:33528493
000904495 0247_ $$2WOS$$aWOS:000642310500024
000904495 037__ $$aFZJ-2021-06065
000904495 041__ $$aEnglish
000904495 082__ $$a580
000904495 1001_ $$00000-0003-2370-4185$$aChatterjee, Jolly$$b0$$eCorresponding author
000904495 245__ $$aA low CO2-responsive mutant of Setaria viridis reveals that reduced carbonic anhydrase limits C4 photosynthesis
000904495 260__ $$aOxford$$bOxford Univ. Press$$c2021
000904495 3367_ $$2DRIVER$$aarticle
000904495 3367_ $$2DataCite$$aOutput Types/Journal article
000904495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640770790_9133
000904495 3367_ $$2BibTeX$$aARTICLE
000904495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904495 3367_ $$00$$2EndNote$$aJournal Article
000904495 520__ $$aIn C4 species, β-carbonic anhydrase (CA), localized to the cytosol of the mesophyll cells, accelerates the interconversion of CO2 to HCO3–, the substrate used by phosphoenolpyruvate carboxylase (PEPC) in the first step of C4 photosynthesis. Here we describe the identification and characterization of low CO2-responsive mutant 1 (lcr1) isolated from an N-nitroso-N-methylurea- (NMU) treated Setaria viridis mutant population. Forward genetic investigation revealed that the mutated gene Sevir.5G247800 of lcr1 possessed a single nucleotide transition from cytosine to thymine in a β-CA gene causing an amino acid change from leucine to phenylalanine. This resulted in severe reduction in growth and photosynthesis in the mutant. Both the CO2 compensation point and carbon isotope discrimination values of the mutant were significantly increased. Growth of the mutants was stunted when grown under ambient pCO2 but recovered at elevated pCO2. Further bioinformatics analyses revealed that the mutation has led to functional changes in one of the conserved residues of the protein, situated near the catalytic site. CA transcript accumulation in the mutant was 80% lower, CA protein accumulation 30% lower, and CA activity ~98% lower compared with the wild type. Changes in the abundance of other primary C4 pathway enzymes were observed; accumulation of PEPC protein was significantly increased and accumulation of malate dehydrogenase and malic enzyme decreased. The reduction of CA protein activity and abundance in lcr1 restricts the supply of bicarbonate to PEPC, limiting C4 photosynthesis and growth. This study establishes Sevir.5G247800 as the major CA allele in Setaria for C4 photosynthesis and provides important insights into the function of CA in C4 photosynthesis that would be required to generate a rice plant with a functional C4 biochemical pathway.
000904495 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904495 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904495 7001_ $$0P:(DE-HGF)0$$aCoe, Robert A$$b1
000904495 7001_ $$0P:(DE-Juel1)171722$$aAcebron, Kelvin$$b2
000904495 7001_ $$0P:(DE-HGF)0$$aThakur, Vivek$$b3
000904495 7001_ $$0P:(DE-HGF)0$$aYennamalli, Ragothaman M$$b4
000904495 7001_ $$00000-0002-7352-3852$$aDanila, Florence$$b5
000904495 7001_ $$0P:(DE-HGF)0$$aLin, Hsiang-Chun$$b6
000904495 7001_ $$0P:(DE-HGF)0$$aBalahadia, Christian Paolo$$b7
000904495 7001_ $$0P:(DE-HGF)0$$aBagunu, Efren$$b8
000904495 7001_ $$0P:(DE-HGF)0$$aPadhma, Preiya P O S$$b9
000904495 7001_ $$0P:(DE-HGF)0$$aBala, Soumi$$b10
000904495 7001_ $$0P:(DE-HGF)0$$aYin, Xiaojia$$b11
000904495 7001_ $$0P:(DE-HGF)0$$aRizal, Govinda$$b12
000904495 7001_ $$0P:(DE-HGF)0$$aDionora, Jacqueline$$b13
000904495 7001_ $$00000-0001-8700-6613$$aFurbank, Robert T$$b14
000904495 7001_ $$0P:(DE-HGF)0$$avon Caemmerer, Susanne$$b15
000904495 7001_ $$0P:(DE-HGF)0$$aQuick, William Paul$$b16
000904495 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/erab039$$gVol. 72, no. 8, p. 3122 - 3136$$n8$$p3122 - 3136$$tThe journal of experimental botany$$v72$$x0022-0957$$y2021
000904495 8564_ $$uhttps://juser.fz-juelich.de/record/904495/files/erab039.pdf$$yOpenAccess
000904495 909CO $$ooai:juser.fz-juelich.de:904495$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171722$$aForschungszentrum Jülich$$b2$$kFZJ
000904495 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904495 9141_ $$y2021
000904495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2019$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2019$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904495 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904495 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904495 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000904495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000904495 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904495 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000904495 980__ $$ajournal
000904495 980__ $$aVDB
000904495 980__ $$aUNRESTRICTED
000904495 980__ $$aI:(DE-Juel1)IBG-2-20101118
000904495 9801_ $$aFullTexts