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Abstract

Farmers frequently assess plant growth and performance as basis for making

decisions when to take action in the field, such as fertilization, weed control, or

harvesting. The prediction of plant growth is a major challenge, as it is affected

by numerous and highly variable environmental factors. This paper proposes

a novel monitoring approach that comprises high-throughput imaging sensor

measurements and their automatic analysis to predict future plant growth. Our

approach’s core is a novel machine learning-based growth model based on con-

ditional generative adversarial networks, which is able to predict the future

appearance of individual plants. In experiments with RGB time-series images

of laboratory-grown Arabidopsis thaliana and field-grown cauliflower plants, we

show that our approach produces realistic, reliable, and reasonable images of

future growth stages. The automatic interpretation of the generated images

through neural network-based instance segmentation allows the derivation of

various phenotypic traits that describe plant growth.
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1. Introduction

Digital solutions contribute to increase agricultural productivity and improve

yield security, especially during changing climate conditions [1, 2, 3, 4]. In recent

years, machine learning has become increasingly applicable in the agricultural

sector. Especially deep learning methods help to analyze crop phenotypes at

an early stage and to detect plant diseases and weeds to enable a targeted

removal without pesticides [5, 6]. In addition to classification and regression

tasks, like the distinction between crops and weeds and the determination of

biomass from images, temporal prediction plays an increasingly important role.

A prediction of growth stages at an early date, for example, allows planning

security but also enables the farmer to adapt the planned setup objectively

through comprehensive spatial and temporal information [7, 8, 9].

A novel way to predict and analyze the future appearance of a scene or indi-

vidual objects like plants is the use of generative adversarial networks (GANs)

[10]. GANs consist of two neural networks, the generator, and the discrimina-

tor. While the generator tries to create realistic images, the discriminator tries

to distinguish these generated images from real ones [11, 12]. Both networks

are optimized together with the result that a powerful generator is learned that

can generate images with respect to specifically targeted properties like the

growth stage of plants. In this case, contrary to classical growth models, gener-

ated images of future plants have two advantages: First, numerous parameters

of interest can be derived by statistical analysis or further application of ma-

chine learning image interpretation methods. This is an advantage over many

classical approaches, which often estimate only individual parameters. Second,

images are directly assessible and increase the reliability of the results because

they can be visually interpreted by farmers, which is in line with the goals of

explainable machine learning [13]. A general advantage of GANs for temporal

prediction is that they are trained using time-series that can be acquired by reg-

ular measurements with satellites, UAVs, or ground robots and do not require

time-consuming annotations of images.
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In this paper, we predict future growth stages of plants based on RGB-

images acquired in the field using a conditional GAN (cGAN) [14]. Throughout

this paper, we refer to the growth stage as the visible phenotype of the plant

at different plant ages. As condition for the generation of the images of future

growth stages, we use the appearance of a plant at one date in the past. The

pipeline consists of (1) training a data-driven growth model using a cGAN,

(2) temporal prediction of plants from earlier to later growth stages, and (3) a

thorough qualitative and quantitative evaluation of the plant traits derived by

instance segmentation and the generated images by Fréchet Inception Distance

(FID, [15]).

We show that the learned cGAN is highly capable of learning different data-

driven growth models of A. thaliana and cauliflower and predicting realistic

looking and reasonable images. By realistic, we mean that the appearance of

the generated plant images is not distinguishable from reference plant images

at the same growth stage. Reasonable means that plant traits derived from the

generated images are in line with traits assessed of reference plants. Moreover,

generated images serve as visual support for assessing the reliability of the esti-

mation. Our results are objectively evaluated by FID score between generated

and real plant images. We further evaluate them using Mask R-CNN [16] by

performing instance segmentation on real and generated images. For cauliflower,

the projected leaf area derived from generated images revealed different growth

patterns between plants exposed to differently fertilization and irrigation treat-

ment, indicating the potential of the method to conclude from earlier plant

growth on future plant growth under different environmental conditions.

1.1. Related Work

Conventional plant growth prediction. Growth and phenological development

of crops is commonly assessed using the BBCH scale that describes the growth

stages from germination to senescence [17]. Plant growth is affected by abiotic

factors such as temperature, precipitation and further climate conditions, and

biotic factors like pests and pathogens [18]. Many different models have been
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developed to predict crop plant growth based on the estimation of photosyn-

thesis, temperature sums, or different climate conditions [19, 20, 21]. These

conventional approaches are knowledge-based and estimate plant growth on ex-

ternal factors [22]. In contrast, the cGAN approach is based on the phenotype

of plants, which integrates plants’ adjustments to the abiotic and biotic factors,

which it was previously exposed to.

Plant growth prediction with machine learning. Machine learning methods are

potential tools to solve the challenges in predicting plant growth. For this pur-

pose, recurrent neural networks (RNNs) and long short-term memory (LSTMs)

have shown to be especially suitable due to their ability to process temporal

information. Earlier approaches, as presented in [23], have shown that they are

applicable for predicting reasonable yield values from soil quality measurements

or for modeling plant growth and selected parameters adequately, such as as the

trunk diameter of tomato plants [24]. The similarity between both methods is

the type of input data, where one-dimensional measurement values or param-

eters are used to train the artificial neural networks. However, prediction also

works for two-dimensional input, i.e. UAV images. This has the advantage that

the plants are observed more comprehensively, and characteristics of all visible

plant traits are gathered into the model [25, 26].

Generating plant images. For temporal analysis, generative models enable to

predict the plant phenotype at a future point in time. In doing so, parameters

such as diameter, biomass, or yield can be derived from the generated images.

There are three advantages in generating whole plants rather than predicting

individual parameters. The first advantage refers to the fact that reference data,

which is generally needed to learn prediction models for individual parameters,

is time- and cost-intensive to obtain. GANs overcome the challenge, since they

typically learn in an unsupervised way. Not needing reference data is a major

advantage from a practical perspective, as typically, reference data only exists

for harvested fields, when the harvest is counted or weighed. For the imple-

mentation of our proposed method in agricultural practice, fields need to be
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monitored, e.g. by UAV images, a well-established and easily applicable tech-

nique [27]. In this context, the second advantage is that UAV imaging allows

not only for a monitoring of plants at all growth stages, but also reveals spatial

information and quantifies potential heterogeneity in the field. Third, if images

instead of parameters are predicted, this also includes prediction of developing

plant organs such as flowers, as well as effects of abiotic and biotic stresses on

plant morphology. Thereby, negative effects of stresses can be detected early

[28]. This enables selective treatments of individual plants rather than treating

whole fields.

GANs in agriculture. The generation of artificial images with GANs has re-

cently found increased attention in agriculture and plant science. The underly-

ing challenge and task of GANs are to obtain a translation between two domains,

A and B, where a so-called domain is a set of data samples such as images whose

distribution is implicitly determined by the GAN. The various GAN approaches

presented in the literature differ in how domains A and B are chosen. In our

work, we will refer to the early plant stage as the source distribution, denoted

as domain A, and the advanced plant stage as the target distribution denoted as

domain B, where both domains are included in the training dataset and images

from domain B are generated when applying the trained method.

A commonly used type of GANs for agricultural applications are cycle-

consistent generative adversarial networks (CycleGANs), e.g., for the detection

and discrimination of plant diseases and the estimation of their future spread on

its leaves [29, 28, 30]. Other applications include the translation of real images

(domain A) into outputs (domain B) that directly contain interpretations of

the data such as semantic segmentations [31]. Furthermore, outputs can also

be products such as vegetation indices like the normalized difference vegetation

indices [32]. Image-to-image translation is also suitable for data augmentation

and up-scaling of plant imagery, which produces new higher-resolution images

from low-resolution ones and thus enables to analyze plant traits in a more

detailed way [33, 34].
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CycleGANs are particularly suitable if necessary to translate in both direc-

tions, from domain A to domain B and vice versa. Thereby, they do not require

aligned image pairs, which means that for an image from domain A there does

not have to exist a corresponding image of the same plant in domain B [35].

The ability to use non-aligned data is essential for many applications that have

sufficient training data from both domains, e.g., leaves with and without disease,

but which have only a few image pairs [28].

Conditional GANs. In agriculture, aligned temporal image pairs are becoming

widely available due to geo-referenced orthophotos or by using kinematic multi-

sensor systems, which help to position sensor imaging data, for example, by

GPS. In order to exploit this specific data characteristic, cGANs can be used to

learn a powerful generator based on a given set of input and output pairs [14].

These networks show for various application areas that they can achieve good

results in the field of domain adaptation [36, 37, 38], but they have rarely been

used in plant science so far.

Most machine learning methods and especially deep neural networks such

as GANs generally require vast amounts of data to learn from [39]. In case

that a limited number of data is available, data augmentation can be used to

stabilize the learning process of the model. A few specific applications already

successfully use plant data in cGANs, like artificial targeted plant generation,

for the aim of data augmentation. For this purpose, the authors of [40] use

segmentation masks of plants on the input side of a cGAN to synthesize new

real looking plant images on the output side.

One advantage of cGANs is that a condition can be introduced which actively

influences the appearance of the generated images. In the simplest case, the

condition is an image based on which a new image is to be generated. However,

this approach is highly versatile, since the condition and the generated output

do not have to have the same dimension. Beside pairs of images of the same size,

also other corresponding pairs of condition and outputs can be used, e.g., when

generating images (output) from scalars or vectors (condition). For instance,
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the authors of [41] generate images with plants of different sizes, where the

number of leaves is introduced as a scalar condition attached to a noise vector.

The resulting generated images can be used for data augmentation to correct

imbalances and to generate adequate samples in the training set.

To our knowledge, there is no related work yet on the utility of agricultural

data pairs in cGANs where the domains differ in time, as is done in this work.

However, methodically related to our work is face aging, which involves pre-

dicting faces several years into the future using cGANs [42]. Here, cGANs help

maintain the characteristics that form a person’s identity in the future, just as

it is crucial for plant traits.

GAN evaluation. To ensure that the evaluation of GAN-generated images is not

left to human subjective assessment, a wide range of evaluation methods has

been developed [43]. This is particularly important because the loss curves of

adversarial training and validation are more challenging to interpret than those

of classical neural networks so that additional means of evaluation are needed

[10].

The approaches discussed in [43] compare the real images and the generated

images directly, e.g., using the L1-norm, or compare the real data distribution

with the generated distribution, e.g., using the Wasserstein distance [44] or the

Fréchet inception distance (FID) [15]. The FID score, which is also used in this

work, is more robust to noise than other standard evaluation measures like the

Inception Score [45] and works well for the aspects discriminability, robustness,

and computational efficiency. However, FID considers the image in its entirety,

and the less important background has a particular influence on this metric.

Another possibility, which is used in this paper, is to compare parameters

that are derived from real and generated images. In this way, generated images

can be analyzed and evaluated by their content, for example, by segmentation

of whole plants instances or plant organs like leaves and fruits [46, 47]. For this

purpose, a wide variety of image-based analysis methods in the deep learning

area can be used that work on plant detection in the field [48]. Mask R-CNN is
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the current state-of-the-art for calculating instance segmentation and is there-

fore used in this work [49].

2. Material and Methods

2.1. Data

In the following, we use two different datasets. The Aberystwyth leaf eval-

uation dataset of A. thaliana plants [50] was created in the laboratory and

therefore has a high number of data, constant lighting, and no plant overlaps.

In comparison, the Brassica dataset [51] of field-grown cauliflower plants reflects

the typical challenges of real field measurements. The number of images is lower,

the sensor calibration fails in one week, spatial alignment is less accurate, and

crop growth depends on more external factors (climate conditions, soil quality,

cultivation) than under laboratory conditions.

For our approach, we define image pairs of two domains A and B, where

domain A is an image of a plant at an early growth phase and domain B is

an image of a plant at a later growth phase. The terms training data and

test data refer without domain specification always to aligned image pairs of

domain A and B. To indicate individual images, we refer to those that serve

as the condition in the cGAN as input (train-input, test-input) and those with

the same domain as the generated image as the reference (train-reference, test-

reference). For a better reading, if not specified, the term reference refers to

test-reference.

Aberystwyth leaf evaluation dataset. The Aberystwyth leaf evaluation dataset

contains images of the plant Arabidopsis thaliana, which have been grown in a

greenhouse [50]. A robot equipped with an RGB-camera acquired images of four

trays with 20 plants each at regular intervals of 15 minutes during the day. The

plants were observed from day 21 after sowing to day 55 after sowing. For the

generation of image pairs, a spatial and temporal alignment is given because

the camera and trays position does not change over the time series, and the

sampling intervals are approximately constant. For two trays, there are labels
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on leaf-level provided, which are used to train and test the Mask R-CNN for

evaluation.

Brassica dataset. The cauliflower imagery used in this study is taken from

the Brassica project, which contains comprehensive multi-modal data from au-

tonomous field observations and in situ measurements of crop sizes [51]. There,

two beds of cauliflower (Brassica oleracea var. botrytis) with about 140 plants

each were imaged from sowing to harvest. Both beds are divided into about

4 equally sized subareas of different irrigation and fertilization. In the follow-

ing the subareas are indicated with {i+f+, i+f-, i-f+, i-f-}, where i denotes

irrigation, f fertilization and +/- mean sufficient or insufficient conditions, re-

spectively. The imaging was performed weekly in approximately equidistant

intervals over ten weeks from planting to harvest. The measuring vehicle is a

kinematic multi-sensor system, namely a ground robot equipped with two lat-

eral RGB cameras, which take images from above. We use the RGB images

from the growth stage of week 1 to week 9 of cauliflower that are available for

each bed. In the growth stage of week ten, most cauliflowers extend beyond the

edges of the image and are therefore not considered.

In addition to the imaging sensors, the robot has a GNSS antenna, through

which the acquired images are geo-referenced. This enables the monitoring of

images of the same plant at different times. Fig. 1 shows the RGB image of an

identical plant over weeks 2, 4, 6, and 8 of the growing season. One can see that

from a certain size, the plant go beyond the size of the image and cannot be

captured entirely, even if it grows in the image center. It is also visible that the

plant appears brighter with each week because it has grown closer to the robot’s

light. From the geo-referencing of the images, aligned image pairs are derived,

i.e., images that have observed the same scene in at least two different growth

stages. We consider two images as showing the same scene at different points

in time if the GNSS-derived coordinates of the image centers do not differ by

more than 2cm. This corresponds to the accuracy level of the ground robot’s

geo-referencing. As the robot did not move in exactly the same line each week,
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about 50 % of the images had to be excluded from the dataset. The aligned

image pairs serve as input for training and testing the cGAN.

Figure 1: Aligned images of a cauliflower plant 2, 4, 6, and 8 weeks after planting. Please note,

that the plant’s brightness increases from week to week as it grows higher and is, therefore,

closer to the artificial light source of the ground robot. Moreover, in later growth stages the

plant goes beyond the size of the image and cannot be captured entirely.

2.2. Growth prediction pipeline

The processing can be summarized in 3 steps: training, prediction and eval-

uation (see Fig. 2). First, a cGAN model is learned on aligned image pairs.

In the second step, the generator is used to generate growth predictions from

unseen images from early growth stages. Third, the generated images are eval-

uated, utilizing instance segmentation and FID. In the following, we give more

details about the framework and the evaluation methods.

Conditional GAN. As conditional GAN we use the Pix2Pix framework provided

by [14]. With this, a mapping G : {X , z} → Y is learned, where X is the

input image, z is random noise, which is an indirect input realized as dropout

within the architecture, and Y is the output image. The cGAN consists of a

generator G and a discriminator D. It is called adversarial training because G

tries to generate images that are indistinguishable from real images, while D is

trained to identify the generated images of G as such. In GAN literature, the

generated images are also called fake or artificial images. The objective function

is therefore generally formulated as

G∗ = arg min
G

max
D

LcGAN(G,D), (1)
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Figure 2: Processing pipeline: First, a conditional GAN is trained on training pairs of domains

A and B. Through adversarial training of discriminator (D) and generator (G), the generated

images become more realistic with each epoch. Second, the generator is used to generate

predictions from the test-input. The third step is the evaluation, divided into instance seg-

mentation using Mask R-CNN and FID calculation. Instances are calculated on generated

images as well as on reference images with the use of a Mask R-CNN model. The comparison

of the instance parameters (bounding box, area of the segmentation mask) allows a statement

about the quality of the generator. FID score provide an additional objective measure about

the quality of the generated plant images.

with the loss function

LcGAN(G,D) = EX,Y [log D(X ,Y )] + EX,z[log(1− D(X ,G(X , z)))], (2)

where G tries to minimize it, while D tries to maximize it. If LcGAN(G,D)

becomes minimal, either the generator is powerful, or the discriminator is very

weak, and vice versa, if it becomes maximal. Therefore, the training goal is to

realize both adversarial goals at the same time so that they are balanced in the

best case at the end of the training. In order to achieve this, the gradient descent

is always alternately applied first to the discriminator and then to the generator.

To additionally avoid blurring, the objective function is supplemented by L1-

loss,

LL1(G) = EX,Y,z [‖Y − G(X , z)‖1] (3)
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which forces greater similarities between the real and generated images. This

loss is added to the objective function,

G∗ = arg min
G

max
D

LcGAN(G,D) + λLL1(G) (4)

where λ is used to control the weighting of the losses. Since noise in the input

would be suppressed, the noise is implemented via dropout layers, and thus a

stochastic result is obtained.

The generator G network is a U-Net [52] with skip-connections. Hereby, the

input images are first processed in an encoder architecture until a bottleneck

layer, to which a symmetrical decoder structure is attached. Skip connections

are used so that significant features of earlier layers, such as edges from which

the position in the image or the plants’ size can be determined, are not lost in

the bottleneck.

The discriminator D is a convolutional network that classifies the generated

images into real and fake. A particular aspect is that the images are not pro-

cessed in the network as a whole, but rather smaller patches of the input image,

of which an average classification value is calculated. This has the advantage

of learning to model a more refined structure and a better texture instead of

coarser structures [14].

2.3. Evaluation

We perform the evaluation qualitatively and quantitatively, where we assess

the appearance of single plants and the distribution of the generated plants.

Evaluation by instance segmentation. The first part of the evaluation focuses

on the appearance of the plants. For this, manually derived segmentation masks

of the real images are compared to estimated segmentation masks of the gener-

ated images by means of parameters such as extent and area. Since semantic

segmentation, where each pixel is assigned a class, is insufficient due to limi-

tations when plants overlap, we utilize Mask R-CNN to compute segmentation

masks, which are semantic segmentations of each individual plant instance. The
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instance segmentation masks can be used to quantify plant traits such as pro-

jected leaf area. Besides the segmentation masks, we use estimated bounding

boxes of the instances, from which we obtain the parameters diameter and center

of the plant.

More specifically, for instance segmentation we use the Mask R-CNN frame-

work Detectron2 [16]. It is pre-trained on everyday objects of the large scale

COCO dataset [53] and fine-tuned on labeled images from the respective datasets.

The train and test data for fine-tuning include images from all growth stages.

For instance segmentation of A. thaliana, the Mask R-CNN model is fine-tuned

on about 850 images and evaluated on about 250 images. For experiments with

cauliflower of the Brassica dataset, it is fine-tuned with 25 images and evalu-

ated on 10 images. Although the amount of training data for fine-tuning in

the Brassica dataset is small, it is sufficient because basic features are already

learned in the comprehensive pre-training. A separate instance segmentation

model is trained for each dataset, wherein both datasets we restrict ourselves

to two classes, plant and background. For both datasets, high-quality bounding

boxes with an average precision > 75 % and semantic instance segmentation

masks with an average precision > 70 % are estimated. In all experiments, the

same model is applied to the reference and the generated images (Fig. 3).

From the bounding boxes, the center position and the width of the plants

are derived. Here, the center position is defined as the center of the leaf ex-

tent, which approximates the plant’s actual center. As width we refer to the

extension of the cauliflower heads vertical to the plant row and thus vertical to

the direction of motion of the robot. In contrast to the height, which is defined

here as the bounding box size in the direction of the plant row, the width is not

affected by overlap errors, as the distance between rows is higher than between

plants. The segmentation area is used to determine the plants’ size, i.e., the

number of pixels covering the plant, which can be converted to a metric given

a scale.

13



generated A reference A generated B reference B

Figure 3: Two examples, A and B, of instance segmentation using Mask R-CNN performed on

two pairs of generated and associated reference images of cauliflower growth week 5. Colors

are chosen randomly and have no meaning. The classification certainty is indicated in the

corners of the boxes.

Evaluation by Fréchet Inception distance. The second part of the evaluation

focus on the Fréchet Inception Distance (FID) [15], which calculates the distance

between the Gaussian image distributions of the real images and the generated

images.

The basic principle can be described in three steps: First, a pre-trained

Inception Net embeds both image sets to a new feature representation. This

feature representation is the activation of the flattened pooling layer with di-

mension 2048, one of the deepest layers in the Inception Net. Although the

Inception Net was trained with images from ImageNet instead of plant images,

this layer represents the basic features of the image. Therefore it is suitable for

embedding for a wide range of RGB datasets. Second, Gaussian distributions N

are defined by calculating the mean values µ and covariance matrices Σ of these

features. In the last step, the Wasserstein-2 distance between the two Gaussian

distributions is computed with

FID(Nr,Ng) =
∥∥µr − µg

∥∥2
2

+ Tr
(

Σr + Σg − 2 (ΣrΣg)
1
2

)
, (5)

where Nr(µr,Σr) and Ng(µg,Σg) are the Gaussian distributions of reference and

generated images. Fig. 4 illustrates how FID(Nr,Ng) value behaves in different

constellations of input distributions. The smaller the FID(Nr,Ng), the higher

the similarity between reference and generated distributions.
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Figure 4: Illustration of FID(Nr,Ng) in dependence of different input image distribution.

Each image in the upper line represents a generated image distribution. Each image in the

bottom line represents the associated reference image distribution. The higher the similarity

between the distributions, the smaller the FID(Nr,Ng).

3. Experiments and Results

We performed two different experiments denoted by Arabidopsis and Cauliflower

by calculating a different cGAN-based growth model for each data set. We first

describe the different experimental setups and then analyze and compare the

respective results.

3.1. Experimental Setup

Experimental goals. In the experiment Arabidopsis we use the Aberystwyth

leaf evaluation dataset and calculate a model that predicts the phenotype of

A. thaliana 17 days into the future. The aim is to train a model, which predicts

early growth stages (e.g., day 21 → 38) and late growth stages (e.g., day 38 →

55) simultaneously.

Similarly, in Cauliflower we use the Brassica dataset and calculate a model

that predicts the phenotype of cauliflower three weeks into the future. The

model allows growth predictions of plants with any growth stage between weeks
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1 and 6 after planting as the condition. Accordingly, the results should be

realistic plants with a growth stage between weeks 4 and 9.

We have different expectations of the generated images in terms of realistic

appearance, reliability, and reasonableness:

• Realistic appearance: The images as a whole should show details, be as

blur-free as possible, and contain no artifacts. Plants should look natural

in terms of color, structure, and size.

• Reliable generation: The model should have a generalization ability, i.e.,

the generation should not only work for a part of the dataset but be robust

to different growth stages, shapes of the plant, and background conditions.

• Reasonable output: The generated image should not be arbitrary but de-

pend on the input image. If a model is trained on different field treatments,

it should be able to predict different plant sizes accordingly.

It must be noted that we do not expect the generated image to contain

every detail of the reference image. Especially the orientation and size of single

leaves varies strongly between growth stages that are 17 days or three weeks

apart and therefore cannot be reconstructed. Rather, we expect to produce a

plant that is similar to the reference in terms of overall size and position in the

image, and thus geo-referencing in the field to be within the accuracy of the

image alignment. It is also expected that the highly accurate image alignment

and almost continuous observation positively impact the results of Arabidopsis

compared to Cauliflower.

Data preparation. The Arabidopsis train-test split is realized on the basis of a

clear spatial separation. Three sets, namely tray031, tray032, and tray033, are

used for training and tray034 for testing. After cutting individual plants from

the trays over all timestamps and building the aligned image pairs, it results in

7618 training pairs and 2707 test pairs.

For the Cauliflower dataset, we perform a spatially disjoint train-test split

such that for training the plants from bed 01 are used, for testing the plants
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from bed 03. A distinction between irrigated and fertilized treatments is not

made during training, so we use the cauliflower plants from the entire bed 01.

For testing the 3-week aligned image pairs of bed 03 are distinguished between

the field treatments {i+f+, i+f-, i-f+, i-f-}. In this way, we intend to inves-

tigate whether the model covers different growth behavior with modified fertil-

ization and irrigation. The number of aligned image pairs for this experiment

is recorded in Tab. 1.

Week Train: Bed 01 Test: Bed 03∑
i+f+ i+f- i-f+ i-f-

∑
1 → 4 124 43 57 44 46 190

2 → 5 322 110 82 94 90 376

3 → 6 198 72 70 72 80 294

4 → 7 0 0 86 0 0 86

5 → 8 407 166 100 152 104 522

6 → 9 270 148 118 124 150 540

Table 1: Number of 3-week aligned cauliflower image pairs divided in bed 01 (train) and bed

03 (test). For Experiment Cauliflower all training data of bed 01 are used. The test data

are divided into the regions {i+f+, i+f-, i-f+, i-f-}. Due to a sensor outage in week 7, there

are no image pairs for step 4→7 in bed 01 and only pairs in section i+f- of bed 03.

Data pre-processing. For training, we clean the aligned image pairs in two as-

pects. On the one hand, we sort out pairs of images where no plant is visible

in domain A but is visible in domain B. This occurs mostly in the early growth

stages of experiment Cauliflower when an image is taken between two plants,

but the plant in domain B is already so large that it grows into the image. On

the other hand, we sort out images where a plant is visible in domain A but

not in domain B. This case occurs when the plant is harvested in the meantime.

Since the images were taken on a trial field, this happens often, but such image

pairs would falsify the training. However, image pairs in which the plant is only

partially visible in both domains are not rejected. Instead, they contribute to
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making the training more robust by increasing diversity in the data distribution.

cGAN configurations. Since the generator is optimal for square images, all rect-

angular image pairs are provided with an equally large black border on the top

and bottom sides. Data augmentation consists of random cropping, vertical and

horizontal mirroring, and rotations applied to both domains of the train and test

image pairs. The rotation options are limited to 0 deg and 180 deg to maintain

the geometry of the vertical alignment of the cauliflower rows in each image. All

images are reduced to the same size of 256 px× 256 px for training and testing.

The network architecture is maintained in its original state as presented in [14];

however, some hyperparameters are adjusted. For instance, the learning rate

is 1e − 4, the loss weighting parameter λ is 100, and the batch size is 1. The

number of epochs is 160 for Cauliflower and 40 for Arabidopsis, in each case

the second half with linearly decaying learning rate.

3.2. Results and Discussions

Visual analysis of generated A. thaliana images. Fig. 5 shows 3 examples of

visual results of temporal prediction in the Arabidopsis experiment. The upper

row shows the prediction from day 23 to 40, the middle row from day 30 to 47,

and the lower row from day 37 to 54. It is clear to see that the prediction is

successful in both early and late epochs because the generated images are highly

similar to the reference images, both in terms of the extent and the number of

leaves. There are only little details that reveal the artificiality of the generated

plants. For instance, in the generated image on day 40 (upper row, center),

there are two leaves in the lower part that are not attached to the plant with a

stem, and on day 54 (lower row, center), there is a small artifact in the upper

right corner. In general, it is noticeable that larger outer and inner smaller

leaves are generated without being blurry. Another noteworthy aspect is the

detailed generation of the background. It looks nearly the same as the input,

even the small lumps of dirt change their position in the generated image just

like in reality.
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domain A: test-input domain B: generated domain B: test-reference

Figure 5: Some example results of experiment Arabidopsis. The left column represents the

test-input in domain A, the middle column is the generated output in domain B, and the

right column shows the aligned test-reference image to domain A in domain B. A prediction

of early growth stages (top row: day after sowing 23 → 40), middle stages (middle row: day

after sowing 30 → 47) and advanced growth stages (bottom row: day after sowing 37 → 54)

is possible.
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Evaluation of generated A. thaliana images using Mask R-CNN. Fig. 6 and

Fig. 7 show the comparison of the generated and the reference images by means

of the projected leaf area, where Fig. 6 focuses on single plants and Fig. 7

addresses the average values per week.

Fig. 6 shows a high correlation between the size of the projected leaf area

of corresponding generated and reference images of the same domain. The high

R2 value of 0.95 indicates the good performance of the model for temporal pre-

diction of plant sizes. The projected leaf area is derived from the semantic

A. thaliana masks of the instance segmentation, which was obtained by Mask

R-CNN for both the generated and reference images. The color indicates se-

quentially the time of prediction, from dark blue (early growth phase) to green

(medium growth phase) to yellow (late growth phase). Only a slight overes-

timation of the projected leaf area can be seen over the whole period, which

becomes smaller with increasing plant size (gradient 0.98).

The quality of the temporal prediction of A. thaliana is underlined by Fig. 7

when comparing the total size of reference and generated plants in the reference

period (days 38 to 56). The average size of the projected leaf area in the

generated and reference images is almost the same for every day of the temporal

prediction. However, the generated curve is very smooth, while the reference

curve has small bumps that are very typical of a true plant growth curve. The

maximum deviation is 2000 px on day 54 and the average deviation over all

days is less than 500 px, so remarkably low in all growth stages. At later growth

stages, the standard deviation of both, reference and generated plant, increases

absolutely, showing increased plant size variability in advanced growth stages.

Visual analysis of generated cauliflower images. In the experiment Cauliflower,

first, the appearance of the test images of different growth stages are visually

assessed Fig. 8). The generated cauliflower images of domain B (middle column)

look realistic and could be mistaken for real cauliflowers by an unbiased judg-

ment. The comparison of the generated images with reference images for every

week (right column) shows a variety of reasons for this. Although there is some
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Figure 6: Comparison of the projected leaf area [in pixels] of reference and generated

A. thaliana plants. In the scatter plot, one dot refers to a pair of reference and generated

plant. The grey line indicates the optimal line, while the black line represents the regression

line. In the upper left corner, the straight-line equation and the R2 value are indicated.

noise in some locations, like on the left side of the cauliflower in the generated

image of week 9, the overall sharpness of the generated images is almost as good

as with the reference. In addition, brightness, contrast, and saturation, as well

as color values of foreground and background, match the reference.

A detailed look at the foreground shows that the size, number, and shape

of the leaves is plausible. Apart from a few exceptions (bottom leaf in week 5,

rightmost leaf in week 8), the orientation of the leaves towards the center of the

plant is correct, which can be seen from the direction of the leaf veins. Like-

wise, the image background is realistically represented. Exceptional brightness

levels like in week 8, in which the background is much darker than in the other

images, are captured as well as small details in the background. For example,

in the steps 1 → 4 and 2 → 5, the drainage pipes are visible in the generated

image at reasonable positions. Likewise weeds of various sizes are visible in the
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Figure 7: Measured and estimated growth of A. thaliana plants over time in pixels quantified

as projected leaf area of reference and generated images. Only the prediction in the range

from 38 to 56 days after sowing is displayed. The error bars indicate the standard deviation.

background next to the cauliflowers in all stages of growth.

When analyzing the relations between the generated images (middle column)

and the reference image of input domain A (left column), which is used as a

condition for the prediction, we observe a clear correlation for overall cauliflower

size. A specific input size in domain A causes a certain output size in domain

B, which matches the non-linear growth of cauliflower in the left column. From

week 1 to 3, cauliflower shows a rather slow growth, which picks up substantially

by week 5, when plants show a fast increase of leaf growth and number. This

rather exponential growth provides a challenge for prediction, as the relation

between condition and expected output is not constant over time. However, the

resulting sizes in generated images of domain B (middle column) still fit the

reference (right column) well.

Looking at the orientation of the individual leaves, there is not obvious

pattern between reference images of domains A and B. Although the growth
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direction and orientation of individual leaves does not change within three weeks,

emerging leaves often become more dominant and overlay other plant organs.

Therefore, our temporal growth prediction considers the plant’s development as

a whole, rather than changes in individual leaves. To make use of the generated

images, it is essential that the center of plants does not change and is well

geo-referenced, just as is expected for plants as sessile organisms. Our example

images show that despite inaccuracies of the image alignment (see Sec. 2.1),

the center position of the plants in the left and middle column match very well

between both domains.

Evaluation of generated cauliflower images using Mask R-CNN. In Fig. 9, we

compare the growth of generated (y-axis) and reference instances (x-axis) for

different treatments. For all four treatments, it is visible that the points cluster

in an area around the grey lines, which is the target relationship, where the

generated projected leaf area is identical to the reference one. Overall, there is

a trend that plants in early growth stages are predicted to grow a little too large

(black regression line above the optimal grey line), and plants later in growth

tend to grow a little too small (black below the grey line). This is also evident

from the derived equation of the fitted line, which has a gradient smaller than

1 in all cases. This is likely caused by the observed exponential growth, while

the model is trained to work with all plant ages. However, R2 values from 0.66

to 0.82 show that temporal prediction works well despite the field conditions.

It is also noticeable that points of some weeks are not clearly separated. For

instance, week 5 + 6 and week 8 + 9 partially overlap. This is due to the natural

variance in the expression of the plants’ phenotype - even cauliflowers exposed

to the same field treatments develop differently within a certain range. It is also

noticeable that the dispersion of the points increases with the plant age, which

is explained by the higher natural variance with rising projected leaf area.

It is apparent that well irrigated treatments i+f- and i+f+ are more under-

estimated than less irrigated treatments i-f+ and i-f-, which can be seen from

the amount of points below the grey line. This comes from the joint training
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domain A: test-input domain B: generated domain B: test-reference

Figure 8: Examples of input, generated and reference images of Cauliflower from week 1-6

for domain A and 4-9 for domain B. The rows show different growth prediction steps. Week

1 → 4 in the top row, week 2 → 5 in the second row up to week 6 → 9 in the bottom row.

The left column represents the input domain A, the middle column is the generated output

in domain B, and the right column shows the aligned reference image to domain A in domain

B. The more similar the middle and right columns, the better the generated image.
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with all field treatments, which influence that different treatments counteract

each other, so that there is a shift in the learned generator towards the average

growth of all treatments. Therefore large plants are estimated slightly too small,

and small plants slightly too large.

treatment i-f- treatment i-f+

treatment i+f- treatment i+f+

Figure 9: Comparison of the projected leaf area in pixels of reference and generated cauliflower

images. The data are separated into four subplots according to their irrigation (i) and fer-

tilization (f). One dot in the scatter plots refers to a pair of reference and generated plant,

where the color of the dots indicate the week (w). The grey line indicates the optimal line,

while the black line represents the regression line. In the upper left corner, the straight-line

equation and the R2 value are indicated.
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Nevertheless, the absolute differences in size between the treatments is well

modeled, which is best seen in Fig. 10. We analyzed the mean projected leaf

area, which is equal to the mean segmentation area, along with the standard

deviation of the reference plants (left) and the generated plants (right) weekly.

For these experiments, only those plants are taken into account that are located

in the image center, as indicated by the center of the bounding box. The reason

is to avoid plants that are not completely visible in the image and influence the

distribution of the sizes.

It is clearly seen from week 5 onward that the sizes of the reference plants

are strongly dependent on the field treatments. Well irrigated and fertilized

plants grow better than plants lacking water and nutrients, which is in line with

expectations and analyses performed by [51]. The size of reference plants grown

under i+f+ (blue line) was bigger compared to i+f- (green), followed by i-f+

(orange) and i-f- (magenta). Although the values of the generated plants with

i+f- treatment is larger than i+f+ in weeks 4 to 6, there is a clear analogy to

the growth of reference plants under the respective treatments. Noteworthy in

week 9 is the bending of the green line in both reference and generated plants.

Whatever hampered plant growth at this later stage, it was apparently already

encoded in the images from week 6 and detected by the model, although plant

size was not different affected at this time.

In week 7, the generated plants show a smaller increase in size in comparison

to the other weeks. Using the growth pattern of the reference plants with i+f-

treatment for comparison, one would expect the generated plants in week 7 to be

about 2000 px to 3000 px larger in all field treatments. We see two reasons that

it does not occur and that plants are often underestimated in week 7. First, the

training data for step 4→ 7 (see Tab. 1) is missing and the generator incorrectly

interprets some input images from week 4 as images from week 3. Second, the

beginning of exponential growth at these growth stages causes difficulties, as

small differences in the condition have large effects on the generated images.

We assume that more training data from the exponential growth period, at best

under different climatic conditions, would improve this behaviour. However,
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in all weeks, the sizes of the generated cauliflowers are within the standard

deviation of the reference cauliflower sizes.

Weekly development of reference plants
Weekly development of generated

plants

Figure 10: Size comparison of the mean segmentation area [in pixels] over weeks between

reference (left) and generated images (right) of experiment Cauliflower. The error bars

indicate the standard deviation in the respective weeks. The lines are separated into the

different field treatments.

Analyzing FID scores. Besides evaluating the quality of single plant instances,

we further calculate the FID scores for both experiments to assess the accuracy

of the estimations at each growth stage. Unlike many related works, we analyze

three different FID scores, namely

• FID(Nr,Ng): similarity of the distributions of test-reference and generated

images,

• FID(Nr,Nt): similarity of the distributions of test-reference and training-

reference images,

• FID(Ng,Nt): similarity of the distributions of generated and training-

reference images.

The results are summarized in Tab. 2.

An absolute evaluation of these values is not trivial, but two aspects are note-

worthy for Cauliflower experiment. First, as expected, we observe that the
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Experiment FID(Nr,Ng) FID(Nr,Nt) FID(Ng,Nt)

Cauliflower

i-f- 34.18 55.62 51.63

i-f+ 33.91 48.04 55.29

i+f- 38.64 48.21 56.33

i+f+ 31.14 49.60 54.55

Arabidopsis 38.12 28.90 42.25

Table 2: Overview about FID scores FID(Nr,Ng), FID(Nr,Nt) and FID(Ng ,Nt) of both

different experiments and different treatments.

generated images have a higher average similarity to the test-reference images

than to the train-reference images due to different growth-stages. Second, we

observe that the distributions of generated and test-reference images are more

similar to each other than the distributions of train-reference and test-reference

because FID(Nr,Ng) is lower than FID(Nr,Nt). We see this as evidence that

FID(Nr,Ng) compares distributions that closely resemble and that our neural

network-based growth model produces reasonable images with a realistic ap-

pearance.

In contrast to the Cauliflower experiment, in the Arabidopsis experiment,

FID(Nr,Ng) is larger than FID(Nr,Nt). While FID(Nr,Ng) only slightly ex-

ceeds the mean value in this category of the experiment Cauliflower, FID(Nr,Nt)

has decreased significantly in direct comparison. Thus, the quality of the gen-

erated images is not worse than in the Cauliflower experiment, but the dis-

tributions of test-reference and training-reference have an exceptionally high

similarity due to the laboratory conditions. Again, FID(Nr,Ng) is smaller than

FID(Ng,Nt). This is essential as it suggests that in both experiments the plants

are actually generated from the input conditions rather than replicating the best

fitting training pattern.

Key influencing factors for generated images in the field. We identified four

factors from both experiments on which the accuracy of the temporal predictions
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mainly depend, which is essential for applications in the field: 1) an observation

rate as frequent as possible and thus a large number of aligned images with

different time references to train the model; 2) an exact geo-referencing of the

images, which in this case was produced by laboratory conditions, but can also

be achieved in the field; 3) high-quality images with sufficient spatial resolution

to detect nutrient, water or other deficiencies at an early stage; and 4) a complete

view of whole plants with little overlap of neighboring plants.

Mode Collapse. A common problem when using GANs is mode collapse, which

refers to the problem of the model converging to a state where different inputs

result in the same or very similar outputs. The number of modes the generator

collapses to varies widely, and often the model jumps back and forth between

modes during training iterations. We observed mode collapse in preliminary

experiments with both datasets, in which we learned independent models for

each time step. For instance, in the Brassica dataset, one model only for the

time prediction of week 1→ 4 and another model only for step 2→ 5. Training

one model for all growth stages prevented mode collapse, attributed to higher

diversity in the training data. However, there are still phenomena that occur

similar to mode collapses. In some cases, two generated plants have the same

basic structure, but the plant is more extended in a later growth phase. That

means the inner leaves look the same, while the outer leaves are expanded. Note

that the position of the plant in the generated image remains correct, i.e., even

if the inner leaves of the plant appear unchanged, the center position of the

generated instance is close to the center position of the input domain. So the

generated plants are still realistic and reasonable.

In order to increase the output diversity, we have experimented with an

increase in input diversity by means of data augmentation methods such as

Cutout, CutMix [54] and synthetically generated data. Moreover, we conducted

experiments with changed hyperparameter, modifying γ to control the loss

weighting (see Fig. 4), or choosing a different architecture such as the Diversity-

Sensitive Conditional GAN [55], which is designed to force variability through
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a different structure and loss functionality. None of these attempts is successful

in enforcing more diversity in the generated images. For applications similar to

ours, where we primarily evaluate the size of the generated plants, the lack of

variability at the leaf level is not a problem. However, this phenomenon shows

that the power of the generator is still limited and that reliably increasing di-

versity is still an open research question.

4. Conclusion

In this work, we have demonstrated the suitability of a conditional generative

adversarial network based on Pix2Pix to generate realistic looking and reliably

generated images of future plant growth stages in an unsupervised manner. In

our experiments with laboratory-grown Arabidopsis thaliana and field-grown

cauliflower, we comprehensively evaluated the generated images. The analy-

sis using Fréchet Inception Distance shows quantitatively that the generated

images show strong similarities to the reference images. We qualitatively eval-

uate our results by applying Mask R-CNN to obtain an instance segmentation

of plants. In doing so, we derive valuable parameters such as plant size from

the estimated instance segmentation mask and use them for comparing plant

instances of the generated and real images. Using our conditional adversarial

network-based growth model for cauliflower, we illustrated that the mean plant

size and the plant’s position are realistically estimated in six different growth

stages. Analyzing the results for plants with four different field treatments, we

demonstrated that plants with good irrigation and fertilization are predicted

to be larger than those with deficiencies, as is the case in reality. Compared

to the laboratory experiment with Arabidopsis thaliana, we observed a higher

discrepancy between generated and reference images which can be related to

the less exact geo-referencing of images and partial overlaps between plants.

For future research, we point out some interesting directions: In modern

industrial agriculture, generally, a farmer aims to plan already at the planting

stage when the field will need to be cultivated and when crops will be ready
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for harvest. However, uncertain long-term weather forecasts, extreme weather

events, and pest or pathogen occurrence make it challenging to predict these

outcomes with high accuracy. To account for this, monitoring and screening

the plants’ current status in the field would be necessary but is labor-intensive

and time-consuming if conducted by the farmer or another expert. As pre-

sented in this paper, a monitoring approach, which comprises high-throughput

sensor measurements and automatic analysis, can overcome several challenges

connected to this. First, since the current stage of the plant is continuously ob-

served, and the prediction of the future stage is based on it, the estimated time

for harvesting is expected to be more accurate than conventional approaches.

Besides, the difference between a plant’s current status and a farmer’s expecta-

tions about plant status is visually assessible and quantifiable so that the farmer

could take early action in the field to prevent negative yield results. Finally,

planning reliability could be increased, not only for the time of harvest but also

for the expected harvest yield.

A future methodological direction is to extend the generator model by adding

aligned image time series and further environmental input as well as domain

knowledge that is available for the field and that influence plant growth. For

instance, for most fields, climate data is available by nearby weather stations

that provide data such as temperature, precipitation, and sunshine hours. There

may also be pre-information on soil quality and nutrient content, which can be

included in the model as bias. Also, other kinds of image data, such as hyper-

spectral or thermal images, can be considered. These inputs can be combined

in a multi-modal generative adversarial network, which is expected to give more

comprehensive and reliable growth predictions, resulting in easier planning and

enable earlier and more targeted actions in the field. Finally, we would like to

point out that we have used our methodological approach for growth predictions,

however, we also see potential in other application areas such environmental sci-

ences, where the prediction of future states is an essential task.
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[20] H. Kage, H. Stützel, C. Alt, Predicting dry matter production of cauliflower

(brassica oleracea l. botrytis) under unstressed conditions: Part ii. compar-

ison of light use efficiency and photosynthesis–respiration based modules,

Scientia horticulturae 87 (3) (2001) 171–190.

[21] J. E. Olesen, K. Grevsen, A simulation model of climate effects on plant

productivity and variability in cauliflower (brassica oleracea l. botrytis),

Scientia Horticulturae 83 (2) (2000) 83–107.

[22] J. Sihag, D. Prakash, A review: Importance of various modeling techniques

in agriculture/crop production, in: Soft Computing: Theories and Appli-

cations, Springer, 2019, pp. 699–707.

34

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


[23] S. Park, C. Hwang, P. Vlek, Comparison of adaptive techniques to predict

crop yield response under varying soil and land management conditions,

Agricultural Systems 85 (1) (2005) 59–81.

[24] B. Alhnaity, S. Pearson, G. Leontidis, S. Kollias, Using deep learning to

predict plant growth and yield in greenhouse environments, arXiv preprint

arXiv:1907.00624.

[25] P. Nevavuori, N. Narra, T. Lipping, Crop yield prediction with deep con-

volutional neural networks, Computers and electronics in agriculture 163

(2019) 104859.

[26] K. Johansen, M. Morton, Y. Malbeteau, B. Aragon, S. Almashharawi,

M. Ziliani, Y. Angel, G. Fiene, S. Negrão, M. Mousa, et al., Predicting

biomass and yield at harvest of salt-stressed tomato plants using uav im-

agery.

[27] M. Watt, F. Fiorani, B. Usadel, U. Rascher, O. Muller, U. Schurr, Pheno-

typing: New windows into the plant for breeders, Annual review of plant

biology 71.

[28] A. Foerster, J. Behley, J. Behmann, R. Roscher, Hyperspectral plant dis-

ease forecasting using generative adversarial networks, in: International

Geoscience and Remote Sensing Symposium, 2019.

[29] H. Nazki, S. Yoon, A. Fuentes, D. S. Park, Unsupervised image translation

using adversarial networks for improved plant disease recognition, Com-

puters and Electronics in Agriculture 168 (2020) 105117.

[30] J. Li, J. Jia, D. Xu, Unsupervised representation learning of image-based

plant disease with deep convolutional generative adversarial networks, in:

2018 37th Chinese Control Conference (CCC), IEEE, 2018, pp. 9159–9163.

[31] R. Barth, J. Hemming, E. J. van Henten, Improved part segmentation per-

formance by optimising realism of synthetic images using cycle generative

adversarial networks, arXiv preprint arXiv:1803.06301.

35
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