001     904502
005     20220126162544.0
024 7 _ |a 10.1093/plphys/kiab155
|2 doi
024 7 _ |a 0032-0889
|2 ISSN
024 7 _ |a 1532-2548
|2 ISSN
024 7 _ |a altmetric:103111468
|2 altmetric
024 7 _ |a pmid:33788927
|2 pmid
024 7 _ |a WOS:000671555900044
|2 WOS
037 _ _ |a FZJ-2021-06072
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Verbraeken, Lennart
|0 0000-0001-8028-7088
|b 0
245 _ _ |a Drought affects the rate and duration of organ growth but not inter-organ growth coordination
260 _ _ |a Rockville, Md.
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641836504_26014
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Drought at flowering and grain filling greatly reduces maize (Zea mays) yield. Climate change is causing earlier and longer-lasting periods of drought, which affect the growth of multiple maize organs throughout development. To study how long periods of water deficit impact the dynamic nature of growth, and to determine how these relate to reproductive drought, we employed a high-throughput phenotyping platform featuring precise irrigation, imaging systems, and image-based biomass estimations. Prolonged drought resulted in a reduction of growth rate of individual organs—though an extension of growth duration partially compensated for this—culminating in lower biomass and delayed flowering. However, long periods of drought did not affect the highly organized succession of maximal growth rates of the distinct organs, i.e. leaves, stems, and ears. Two drought treatments negatively affected distinct seed yield components: Prolonged drought mainly reduced the number of spikelets, and drought during the reproductive period increased the anthesis-silking interval. The identification of these divergent biomass and yield components, which were affected by the shift in duration and intensity of drought, will facilitate trait-specific breeding toward future climate-resilient crops.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wuyts, Nathalie
|0 P:(DE-Juel1)173996
|b 1
700 1 _ |a Mertens, Stien
|0 0000-0001-9192-1806
|b 2
700 1 _ |a Cannoot, Bernard
|0 0000-0001-9982-0890
|b 3
700 1 _ |a Maleux, Katrien
|0 0000-0002-6564-9981
|b 4
700 1 _ |a Demuynck, Kirin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a De Block, Jolien
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Merchie, Julie
|0 0000-0003-1735-5118
|b 7
700 1 _ |a Dhondt, Stijn
|0 0000-0003-4402-2191
|b 8
700 1 _ |a Bonaventure, Gustavo
|0 0000-0001-6120-3897
|b 9
700 1 _ |a Crafts-Brandner, Steven
|0 0000-0002-1644-3557
|b 10
700 1 _ |a Vogel, Jonathan
|0 0000-0001-8550-3923
|b 11
700 1 _ |a Bruce, Wesley
|0 0000-0001-8743-0377
|b 12
700 1 _ |a Inzé, Dirk
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Maere, Steven
|0 0000-0002-5341-136X
|b 14
700 1 _ |a Nelissen, Hilde
|0 0000-0001-7494-1290
|b 15
|e Corresponding author
773 _ _ |a 10.1093/plphys/kiab155
|g Vol. 186, no. 2, p. 1336 - 1353
|0 PERI:(DE-600)2004346-6
|n 2
|p 1336 - 1353
|t Plant physiology
|v 186
|y 2021
|x 0032-0889
856 4 _ |u https://juser.fz-juelich.de/record/904502/files/kiab155_pre.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904502
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173996
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT PHYSIOL : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT PHYSIOL : 2019
|d 2021-01-31
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21