001     904503
005     20220103172057.0
024 7 _ |a 10.1016/j.rsci.2021.01.007
|2 doi
024 7 _ |a 1672-6308
|2 ISSN
024 7 _ |a 1876-4762
|2 ISSN
024 7 _ |a 2128/29622
|2 Handle
024 7 _ |a WOS:000621206000008
|2 WOS
037 _ _ |a FZJ-2021-06073
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schmierer, Marc
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Growth and Photosynthesis Responses of a Super Dwarf Rice Genotype to Shade and Nitrogen Supply
260 _ _ |a Nairobi, Kenya
|c 2021
|b Academic Journals
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640769658_11761
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Specific aspects of plant cultivation require tests under fully controlled environmental conditions with restricted energy supply, such as orbit-based space laboratories and low-light conditions. For these growing conditions, super dwarf plants have been developed as model crops, and a gibberellin- deficient Super Dwarf Rice genotype was proposed as a model crop for space flight plant experiments. We tested this genotype in a climate chamber experiment under different illumination and nitrogen supply levels to assess its suitability under scenarios with limited resource availability. A 25% reduction in illumination led to a 75% reduction in yield, mainly due to a 60% reduction in formed tillers and 20% reduction in grain weight, and a 80% reduction in illumination caused total yield loss. Leaf area under reduced illumination was significantly lower, and only marginal changes in the dimensions of leaves were observed. Plant photosynthesis was not significantly different between control and 75% illumination. This was explained by a higher photochemical efficiency under lower light conditions and a reduced mesophyll resistance. Therefore, we concluded that this genotype is well-suited for plant experiments under space and light-limited conditions since it kept its small stature and showed no shade avoidance mechanisms, such as leaf elongation, which would complicate experiments under low-light conditions. Nitrogen concentrations of 2.8 and 1.4 mmol/L led to no differences in plant growth. We concluded that a nitrogen concentration of 1.4 mmol/L is sufficient for this genotype under the light intensities.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Knopf, Oliver
|0 P:(DE-Juel1)164850
|b 1
|u fzj
700 1 _ |a Asch, Folkard
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.rsci.2021.01.007
|g Vol. 28, no. 2, p. 178 - 190
|0 PERI:(DE-600)2406776-3
|n 2
|p 178 - 190
|t International journal of genetics and molecular biology
|v 28
|y 2021
|x 1672-6308
856 4 _ |u https://juser.fz-juelich.de/record/904503/files/1-s2.0-S1672630821000081-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904503
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164850
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RICE SCI : 2019
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21