000904510 001__ 904510
000904510 005__ 20220103172030.0
000904510 0247_ $$2doi$$a10.3389/fpls.2021.640914
000904510 0247_ $$2Handle$$a2128/29618
000904510 0247_ $$2altmetric$$aaltmetric:102943658
000904510 0247_ $$2pmid$$apmid:33692820
000904510 0247_ $$2WOS$$aWOS:000626045100001
000904510 037__ $$aFZJ-2021-06080
000904510 041__ $$aEnglish
000904510 082__ $$a570
000904510 1001_ $$0P:(DE-HGF)0$$aMertens, Stien$$b0
000904510 245__ $$aProximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology
000904510 260__ $$aLausanne$$bFrontiers Media$$c2021
000904510 3367_ $$2DRIVER$$aarticle
000904510 3367_ $$2DataCite$$aOutput Types/Journal article
000904510 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640769203_11761
000904510 3367_ $$2BibTeX$$aARTICLE
000904510 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904510 3367_ $$00$$2EndNote$$aJournal Article
000904510 520__ $$aHyperspectral imaging is a promising tool for non-destructive phenotyping of plant physiological traits, which has been transferred from remote to proximal sensing applications, and from manual laboratory setups to automated plant phenotyping platforms. Due to the higher resolution in proximal sensing, illumination variation and plant geometry result in increased non-biological variation in plant spectra that may mask subtle biological differences. Here, a better understanding of spectral measurements for proximal sensing and their application to study drought, developmental and diurnal responses was acquired in a drought case study of maize grown in a greenhouse phenotyping platform with a hyperspectral imaging setup. The use of brightness classification to reduce the illumination-induced non-biological variation is demonstrated, and allowed the detection of diurnal, developmental and early drought-induced changes in maize reflectance and physiology. Diurnal changes in transpiration rate and vapor pressure deficit were significantly correlated with red and red-edge reflectance. Drought-induced changes in effective quantum yield and water potential were accurately predicted using partial least squares regression and the newly developed Water Potential Index 2, respectively. The prediction accuracy of hyperspectral indices and partial least squares regression were similar, as long as a strong relationship between the physiological trait and reflectance was present. This demonstrates that current hyperspectral processing approaches can be used in automated plant phenotyping platforms to monitor physiological traits with a high temporal resolution.
000904510 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904510 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904510 7001_ $$0P:(DE-HGF)0$$aVerbraeken, Lennart$$b1
000904510 7001_ $$0P:(DE-HGF)0$$aSprenger, Heike$$b2
000904510 7001_ $$0P:(DE-HGF)0$$aDemuynck, Kirin$$b3
000904510 7001_ $$0P:(DE-HGF)0$$aMaleux, Katrien$$b4
000904510 7001_ $$0P:(DE-HGF)0$$aCannoot, Bernard$$b5
000904510 7001_ $$0P:(DE-HGF)0$$aDe Block, Jolien$$b6
000904510 7001_ $$0P:(DE-HGF)0$$aMaere, Steven$$b7
000904510 7001_ $$0P:(DE-HGF)0$$aNelissen, Hilde$$b8
000904510 7001_ $$0P:(DE-HGF)0$$aBonaventure, Gustavo$$b9
000904510 7001_ $$0P:(DE-HGF)0$$aCrafts-Brandner, Steven J.$$b10
000904510 7001_ $$0P:(DE-HGF)0$$aVogel, Jonathan T.$$b11
000904510 7001_ $$0P:(DE-HGF)0$$aBruce, Wesley$$b12
000904510 7001_ $$0P:(DE-HGF)0$$aInzé, Dirk$$b13$$eCorresponding author
000904510 7001_ $$0P:(DE-Juel1)173996$$aWuyts, Nathalie$$b14
000904510 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2021.640914$$gVol. 12, p. 640914$$p640914$$tFrontiers in Functional Plant Ecology$$v12$$x1664-462X$$y2021
000904510 8564_ $$uhttps://juser.fz-juelich.de/record/904510/files/fpls-12-640914.pdf$$yOpenAccess
000904510 909CO $$ooai:juser.fz-juelich.de:904510$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173996$$aForschungszentrum Jülich$$b14$$kFZJ
000904510 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904510 9141_ $$y2021
000904510 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000904510 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904510 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000904510 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000904510 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904510 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000904510 980__ $$ajournal
000904510 980__ $$aVDB
000904510 980__ $$aUNRESTRICTED
000904510 980__ $$aI:(DE-Juel1)IBG-2-20101118
000904510 9801_ $$aFullTexts