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Ladder models of ultracold atoms offer a versatile platform for the experimental and theoretical study of
different phenomena and phases of matter linked to the interplay between artificial gauge fields and interactions.
Strongly correlated helical states are known to appear for specific ratios of the particle and magnetic flux
densities, and they can often be interpreted as a one-dimensional limit of fractional quantum Hall states,
thus being called pretopological. Their signatures, however, are typically hard to observe due to the small
gaps characterizing these states. Here we investigate bosonic ladder models at filling factor v = 1. Based on
bosonization, renormalization group, and matrix product state simulations we pinpoint two strongly correlated

helical phases appearing at this resonance. We show that one of them can be accessed in systems with two-species
hardcore bosons and on-site repulsions only, thus amenable for optical lattice experiments. Its signatures are
sizable and stable over a broad range of parameters for realistic system sizes.
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I. INTRODUCTION

The experimental investigation of ultracold atomic gases
has developed in the last years with remarkable strides. Ul-
tracold atom simulators have been adopted to examine several
many-body quantum problems, with the opportunity of tuning
the ratio between their interactions and kinetic energies and to
trap atomic gases in different geometries. In this context, the
study of ladder geometries generated through optical lattices
offers the possibility of testing the behavior of quantum sys-
tems at the border between one- and two-dimensional systems
[1]. Their kinetic energy is firmly one-dimensional, but the
presence of plaquettes around which the atoms move allows
for the introduction of artificial gauge potentials with nontriv-
ial effects.

In the last few years, the effects of these artificial magnetic
fluxes have been tested for ladder geometries with a transverse
direction defined in either real or “synthetic”” dimension [2]. In
the latter case, an inner degree of freedom of the atoms is used
to represent the transverse coordinate in the ladder. Synthetic
dimensions offer, in this way, the possibility of defining both
sharp edges and artificial gauge fluxes with suitable Raman
couplings [3].

The introduction of artificial gauge potentials in general
breaks time-reversal symmetry and allows for the onset of
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helical many-body states, characterized by the appearance
of a net chiral current running in counterpropagating direc-
tions at the edges of the ladder. Such phenomena have been
investigated for both fermionic [4-7] and bosonic [8,9] non-
interacting gases.

Ultracold gases trapped in ladder systems are currently at
the focus of great attention, due to their nontrivial behavior
reminiscent of both superconducting [10] and quantum Hall
systems [11-14], and the possibility of engineering interact-
ing topological phases of matter [15-20]. In particular, these
systems are characterized by several commensuration effects.
The first kind is related to the physics of Mott insulators and
appears for commensurate ratios between the number of parti-
cles and sites in the ladder [21-26]. The second kind concerns
the ratio between the total artificial magnetic flux enclosed
by the ladder and the number of plaquettes in the geometry:
several nontrivial phases corresponding to crystals of mag-
netic vortices alternate when increasing the flux per plaquette
at fixed particle density [27-30]. A third, and more elusive,
kind of commensuration has been at the center of an intensive
study in the last years, and it is related to the ratio between the
number of particles and magnetic fluxes. For several fractional
values of this ratio, suitable repulsive interactions among the
atoms cause the onset of partially gapped states, characterized
by a helical current. For both fermions and bosons, it has
been shown that many of these helical many-body states are
indeed the one-dimensional ladder limit of fractional quantum
Hall states [31-39]. They can be considered as pretopological
one-dimensional chiral states.

The physics of these many-body states can be under-
stood in terms of specific resonances between the modulation
length of the density of particles and the modulation of the
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hopping phases determining the external fluxes. In particu-
lar, bosonization techniques allow us to understand through
semiclassical approximations the fermionic states appearing
at filling factor 1/3 and the bosonic states at filling factor 1/2
as Laughlin-like pretopological states.

In this work, we focus on the case of 2-leg ladders
of bosonic atoms at filling factor v = 1. Similarly to their
fermionic counterpart at v = 1/2 [35], these states cannot
be discussed in terms of a simple semiclassical approxima-
tion due to the competition of several operators becoming
resonant. The physics at this resonance is indeed dictated
by competing interactions that concur in forming two dif-
ferent phases. The one dominating for hardcore bosons with
rung repulsions is originated by the same effective interac-
tion responsible for the formation of paradigmatic examples
of intrinsically gapless symmetry-protected one-dimensional
phases of matter [40]. In this respect, resonant ladder models
offer a mechanism to form partially gapped phases from inter-
actions that are usually irrelevant, thus providing a platform to
study the features of novel strongly correlated helical systems
that are intrinsically gapless.

Two-dimensional spinless bosonic systems in Hofstadter-
Hubbard models in ladder geometries at v = 1 have already
been numerically studied [41,42], and it was pointed out that
for this specific ratio and certain ranges of the hopping pa-
rameters, signatures of a second incommensurability appear
in the correlation functions [43—46]. A systematic analysis of
the appearance and characterization of the energy gaps in this
system, however, is still missing.

In this work we aim to fill this gap, and we discuss in detail
the physics of this system through bosonization and matrix-
product-state simulation. We show, in particular, that helical
states appear in a ladder of hardcore bosons. With suitable
choices of the interleg interactions, the signatures of these
states are considerably stronger than their fermionic counter-
part at filling v = 1/2. This opens the path for an experimental
study of these strongly correlated and helical phases of matter:
our simulations and analysis confirm indeed that one of the
two helical phases under investigation can be accessed in
bosonic ladders with contact interactions only, which is the
most realistic scenario for atoms trapped in optical lattices.

In the following, we will discuss the possible phases of
matter characterizing this system in the limit of weak tun-
neling along the rungs, and we will investigate in detail its
main observables and correlation functions. Section II defines
the lattice model and its interactions, which are described
through an effective low-energy field-theory in Sec. III. The
renormalization group analysis of the system at the v =1
resonance is presented in Sec. IV, and the main features of
the model are analyzed in Sec. V through matrix product
state simulations. Finally, our conclusions are summarized in
Sec. VI. The Appendices present the detail of our bosonization
and renormalization group analysis.

II. THE MODEL

Ladder models of ultracold bosons trapped in optical lat-
tices have been experimentally realized with rubidium gases
both in spacial ladders [1], by using optical superlattices to
isolate single two-leg ladders, and in synthetic dimensions
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FIG. 1. (a) Graphical representation of the model Hamiltonian.
Arrows represent the tight-binding terms in Eq. (3) and density-
density interactions of Eq. (5) are depicted by colored boxes.
(b) Band structure with polarization (in colors, red corresponds to 1
and blue to |) for 2/t = 0.25. The partial gap induced by interwire
transitions is of size 2€2.

[8,9]. In both cases, suitable pairs of Raman lasers allow
us to engineer an effective long-time dynamics of the sys-
tem described by a low-energy tight-binding Hamiltonian
characterized by position-dependent phases in the hopping
amplitudes of the atoms (see, for example, Refs. [47-50]).
The resulting artificial gauge flux x in each plaquette depends
on the recoil momentum of the Raman lasers and can be
varied by tuning the angle between them (see, for example,
the experiments [51-53]).

In this work, we focus on the case of ultracold bosons
trapped in a two-leg ladder geometry [see Fig. 1(a)].
Their long-time dynamics is described by an interacting
Hamiltonian of the form

H=Ho+Hy +H., (1)

where H represents the kinetic energy of the atoms, whereas
Hy and H, define, respectively, the intraleg and interleg
repulsive interactions. We consider a ladder geometry with L
rungs and a gas of N atoms.

A. The single-particle physics

We begin our analysis from the single-particle features of
the model. The kinetic energy H, is given by two hopping
terms

Ho = Hi + Ha, 2

describing a tight-binding model of spinless bosonic particles
hopping in the ladder geometry. Our model is characterized
by an intraleg tunneling amplitude ¢ and an interleg hopping
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Q (see Fig. 1):

th—tZZb” 1p€? +He,
x=1 y=+1
HQ=—QZ% b, +H.c. (3)

Hereafter we set the lattice spacing a = 1 for simplicity; the
pseudospin index y = %1, or, equivalently, y =1, |, labels the
transverse direction distinguishing two legs of the ladder, and
the bosonic annihilation/creation operators b, ,,/bx y satisfy
the bosonic commutation algebra. We have chosen a gauge
which preserves the translational invariance along the x di-
rection, and the hopping phases along this direction define an
artificial magnetic flux per plaquette x = ¢ Adl defined by
the counterclockwise Aharonov-Bohm phase acquired by an
atom moving along any of the ladder plaquettes.

In a translational invariant case, the single-particle Hamil-
tonian #, can be rewritten in momentum space:

_ bl 2t cos (k + x/2) Q b
—_Xk: k Q 2tcos(k — x/2))°%

“
where by = (by 4, b, )7 is a two-component spinor.

The spectrum of the Hamiltonian (4) is depicted in
Fig. 1(b) for a small value of €2/¢; it matches the typical spec-
trum of one-dimensional systems characterized by a spin-orbit
coupling (whose role is played by x in ;) and the Zeeman
splitting 2. H, defines indeed two cosine dispersions for pseu-
dospiny =1 and y = |, displaced in momentum space by the
flux x. In the case of bosons, the particles condense around the
two minima of these dispersions and their momentum, which
can be measured through time-of-flight experiments. As such,
the momentum is locked to their spins and therefore with the
leg degree of freedom (see, for example, Refs. [8,9]).

The role of Hg, is to open a gap 22 at k = 0. This gap can
be interpreted as the bulk gap of a quantum Hall system in the
one-dimensional ladder limit [11]. When €2 exceeds a thresh-
old ©.(x), the minimum of the energy dispersion becomes
nondegenerate at k = 0, and the system becomes a superfluid
whose atoms are aligned in the x direction of the pseudospin.
For noninteracting bosonic systems, this corresponds to the
Meissner phase characterized by a chiral current proportional
to the flux y [1].

The noninteracting system is indeed characterized by two
main phases: the Meissner phase appearing at small fluxes
and sufficiently large interleg tunneling €2, and a vortex phase
appearing at larger fluxes or smaller values of €2 [1,10].

The introduction of repulsive interactions strengthen the
Meissner phase and allows for the appearance of several
partially gapped and strongly correlated states in the vortex
phase.

B. Introducing the interactions

In ultracold atom experiments, repulsive contact interac-
tions among atoms are common. For a realization of the ladder
model in synthetic dimension, atoms whose position differs
only by the transverse y coordinate are actually located on

the same physical position. Therefore contact repulsions are
represented by the following density-density interactions:

U
Hy = E sznx,y(nx,y -1,

HL =V Z Ny yHx y+1, (5)

X,y

with n,, = b} by, Such interactions have the potential to
drive the system from the vortex to different helical phases,
if the total density » is commensurate to the flux x [11,34,36].

For ultracold atoms trapped in optical lattices, the ra-
tio between interaction and kinetic energy can be varied by
changing the amplitude of the trapping lasers which define
the depth of the trapping lattice. Concerning the ratio between
U and V|, tunable intraspecies and interspecies interactions
can be achieved through the introduction of suitable magnetic
fields via Fano-Feshbach resonances [54]. While rubidium
gases might be difficult to tune in a regime with considerable
differences between intraspecies and interspecies interactions,
a more promising platform might be offered by potassium
[55-58].

For the remainder of this work, and, especially, in our
numerical simulations, we will mostly consider the ladder
hard-core bosonic (HCB) scenario, in which U/t — oo is the
dominating interaction which excludes any double occupation
of a single site (x, y),i.e., ny, < 1. We will consider instead a
tunable interspecies interaction V) .

III. EFFECTIVE LOW-ENERGY DESCRIPTION OF THE
MODEL

To study the physics of the interacting gas at zero tem-
perature we set up a low-energy description of the system in
the continuum limit based on bosonization [59,60]. In order
to examine the chiral states appearing at commensurate val-
ues of the filling factor v = 7 N/Ly, we adopt the following
bosonization identity for bosons [61], accounting for higher
harmonics of the density modulations:

Z B, L (Pko+y))x=pby ()=, ()] . (6)
peZ

b;,y — \IJyT(x) ~

here k) = mN/(2L) is the wave vector associated to the
density modulations, and we introduced two pairs of dual
fields that satisfy the commutation algebra [0, (x'), ¢,(x)] =
im8,y®(x" — x). The fields 6, and ¢, are associated to the
charge and current fluctuations of the particles in the two legs
and the density operator can be approximated with n(x, y) ~
[ko — 0x6,(x)]/m, whereas the current density j, is propor-
tional to d,¢,. Finally, B, is a set of nonuniversal parameters,
and, for our purposes, we will set 8y = 1, B1» = 1/2, whereas
all the other B’s are set to 0. This choice is suitable to approx-
imate hardcore bosons in the limit €2, V, — 0 (see Appendix
A for more details).

The general effective interacting Hamiltonian is mapped
into a two-species Luttinger liquid, which can be described in
terms of two decoupled charge ¢ and spin s sectors. In the fol-
lowing we adopt the standard notation ¢./; = (¢y £ ¢;)/ V2
and 0./, = (04 £6,)/ V2. We also introduce the parameters
u, and K, (with g € {c, s}) which represent the velocities
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and Luttinger parameters of the bosonic modes. The latter
encode the effects of the intraleg interactions in the system.
The interleg tunneling €2 and repulsion V , instead, determine
the presence of additional interactions, which can be cast
into a generalized sine-Gordon form. The effective bosonized
Hamiltonian is derived in Appendix A and assumes the form

dx u
H = Z} f E[uqz(q(ax%)%r é(axeq)z}

ge{c,s

n / dx[hO, + g@@ %0, + Hedl, (1)
with

On(x) = cos 2v/26;, ®)

O,(x) = eiﬂ(G#Gr%) + eiﬂ(@*eﬁ%)_ )

See also Refs. [44,46] for an equivalent derivation. The oper-
ator O, is, in general, fast-oscillating due to the phase (2ky —
X )x; therefore, it averages to a nonzero value only if its phase
becomes position independent, thus the system approaches
the resonance 2ky = x, corresponding to the commensurate
filling factor v = 1.

The operator O, matches the interaction adopted in
Ref. [40] to design intrinsically gapless symmetry-protected
topological phases of matter. Analogously to these topological
states of matter, # > O for the repulsive bosonic model, as well
as for its fermionic counterpart studied in Ref. [35].

In the Hamiltonian (7) we neglected other fast-oscillating
terms that are responsible for the onset of different pretopo-
logical states (see, for example, Refs. [11,31,32]) but are
irrelevant in proximity of v = 1. We also considered systems
with densities far from the Mott commensurate states [21,24],
therefore we also neglected further oscillating sine-Gordon
interactions stemming from the onsite repulsion U. The main
role of the onsite repulsion in our model is to affect the
Luttinger parameters K,. Additional terms, less relevant in
the renormalization group (RG) sense, have been neglected
as well.

Finally, the values of the (bare) coupling constants 4 and g
depend on V| and €2, respectively, and can be approximated
as

_ K3V, B3

" __Spko
272 272

; (10)

see Appendix A for more details.

Differently from the pretopological Laughlin-like states
[11,31,32], the physics of bosons at v = 1 is dictated by the
interplay of the noncommuting operators appearing in O, and
O The g-term, in particular, requires special attention: both
operators in Eq. (9) have the same amplitudes and scaling
dimension, such that a simple semiclassical approach may
not suffice for a clear understanding of the behavior of this
system in the thermodynamic limit. To overcome this diffi-
culty, we resort to a second-order RG analysis, in analogy
with the fermionic ladder models at filling v = 1/2 [35], and
numerical simulations based on matrix product states (MPS).

IV. RENORMALIZATION GROUP ANALYSIS

A first insight of the possible thermodynamical phases and
properties of the model is given by a simple scaling analysis
of the interactions in the effective Hamiltonian (7). The linear
combination of fields appearing in the two terms of the O,
operator (9) and in O}, (8) do not commute. Therefore, in the
ground states of the model, each of these three terms favors
the minimization of different combinations of densities and
currents which are not compatible with each other. Both the
contributions in O, are characterized by a scaling dimen-
sion D, = (K. + K, + K;')/2 and, having the same coupling
constant, none of the two can dominate over the other. The
scaling dimension of O}, is instead D), = 2Kj, such that this
operator would be always irrelevant, in the RG sense, for
repulsive contact interaction for which K; > 1. The form of
the Hamiltonian (7) suggests the potential existence of three
phases.

The first is a Luttinger phase in which both interactions are
irrelevant. It corresponds to the vortex phase of the ladder, in
which both the charge and spin sectors are gapless and all the
two-point correlation functions decay algebraically.

The second phase is the phase dominated by the interaction
Op. Hereafter, we will call it the h-phase. In this phase the
spin sector is gapped and the charge sector is gapless. The
h-phase, semiclassically, corresponds to the situation in which
the field 6, is pinned to one of the minima of O,. As a
consequence, the pseudospin fluctuations and rung current on
the ladder are suppressed in the bulk of the system. However,
it is important to remark that, for finite systems with open
boundary conditions, a rung current appears at the edges of
the system [as depicted in Fig. 6(d) below]. We emphasize that
this phase is qualitatively different from the Meissner phase
appearing at small fluxes since, in the Meissner phase, it is the
rung current being ordered rather than the pseudospin density,
corresponding to the field ¢, being pinned to a semiclassical
minimum.

The third phase is the one in which the operator O, dom-
inates, and we will refer to it as the g-phase. The study of
this phase is less straightforward and its characteristics can
be intuitively understood through a mean-field analysis based
on the mapping into a Wess-Zumino-Witten (WZW) model
(see, for example, Ref. [60]) proposed in Refs. [43,44,46]. We
sketch in the following the key elements to gain insight into
this phase. At the mean-field level, we can separate the O,
operator into the operators o, = V2, acting on the charge
sector, and o5+ = e"ﬁ(%i@f), acting on the spin sector. As-
suming that the operators o, 1 acquire a nonzero expectation
value (o; 1), the operator o. opens a gap in the charge sector
and suppresses the fluctuations of the charge density. The
situation is different in the spin sector: the operators o + can
be mapped into the chiral current operators J and J; of a
WZW model describing the spin sector. With an additional
mapping from this WZW model into a rotated Luttinger lig-
uid Hamiltonian [44,46], it is possible to show that these
operators do not open a gap in the spin sector for small
values of their coupling constants. This can be understood
by considering that the current operator J; + J; constitutes a
perturbation proportional to 9, in the rotated Luttinger liq-
uid: such perturbation shifts the expectation value (9,;), thus
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it introduces incommensurability without opening a spin gap
[44].

In conclusion, mean-field arguments suggest that the g-
phase is characterized by a gapped charge sector and a gapless
spin sector. Such mean-field analysis neglects the interactions
mixing the spin and charge sectors, and may provide only
an approximate description of the g-phase. This study was
performed in Refs. [44,46] to investigate the appearance of a
second incommensurability effect in the correlation functions
of the system for values of 2 comparable with ¢, with ladders
typically close or within the Meissner phase. We believe,
however, that a similar analysis can be extended also in our
regime for 2 < ¢ and systems with well-separated Meissner
and v = 1 resonances. We mention that for contact interac-
tions only we do not observe the onset of the g-phase in this
regime.

The scaling dimensions D, and D, allow us to obtain a
simplified phase diagram as a function of the Luttinger param-
eters [dashed lines in Fig. 2(b)]: the system is gapless for large
values of K. and K; (Luttinger/vortex phase); the h-phase
appears for small values of K, such that O, is more and
more relevant; the g-phase occupies instead a region for small
values of K, and intermediate values of K;. This suggests the
possibility of accessing such a peculiar phase within our setup
with suitable interactions.

Given the complexity of the g-interactions, we apply a
Wilsonian RG study of the Hamiltonian (7) at second order
in the interaction parameters g and 4 to obtain a more accurate
phase diagram. In Appendix A 2 we derive the following RG
differential equations:

Z_? — 12— Dy) +2g2<£: - I;— + Klu)

Z—f =82 —Dg) — th:_j’

da{(l} _ 47T82|:I;_§ + (Ks + Ks—l)%}Ki
e[ ooy (S

an

Note that in the above we only consider the flow of couplings
and Luttinger parameters, neglecting the flow of velocities.
However, we checked that the velocities flow very slowly
and thus yield only minor corrections to the phase diagram,
justifying our assumption of constant u,’s.

Before analyzing in more detail the solution of these four
equations, let us observe that some limiting case can be easily
extracted. Setting g = 0 corresponds with the system away
from the v = 1 resonance; in this case only / and K; flow, and
they follow the standard (second-order) behavior of the sine-
Gordon model [59,60] dictated by the Thouless equations.
The operator Oy, is relevant for K; < 1, such that the system
at g = 0 flows in the h-dominated phase for any bare K; < 1;
for bare K; > 1, the system will flow to the gapped i-phase
for sufficiently large bare values of A.

This general behavior describes also what happens to the
system for large values of the K. Luttinger parameter. For K.,

~
S
~

0.5 1.0 1.5

FIG. 2. (a) Expected phases at x /7 = n for different values of
the initial values K; and K, and //¢. Up to interactions h(0)/t =~ 0.12
[VL. &~ 7t], the phase diagram maintains similar features, and we
resort to a detailed discussion of the case V, =t presented in panel
(b). The colored regions correspond to the numerical outcomes of
the second-order RG flow (see main text): the gray region depicts
the Luttinger/vortex phase, the yellow region corresponds to the
g-phase and the red region to the A-phase (shaded regions mark
stiff or divergent solutions of the RG equations). The dotted lines
signal the boundaries of the phases, obtained from a first-order
scaling analysis: D, > 2 (Luttinger), D, < 2, D, (g-dominated),
Dy, < 2, D, (h-dominated). From first to second order, the size of the
g-phase shrinks significantly. The inset presents estimates of the gap
A o t*e™!" of a vertical slice of the phase diagram at K.(0) = 1.

thus D, sufficiently large, the g interaction is highly irrelevant
and we expect to find the Luttinger phase for values of K 2 1
(if h/t < 1) and the gapped h-phase for K; < 1 [see the right
side of Fig. 2(b)].

Let us address in the following the main features of the
phase diagram, that, in its full complexity, depends on the four
bare parameters of g, i, K., and Kj.

In Fig. 2(a) we present stacks of a restricted two-parameter
phase diagram obtained from the numerical solution of the
RG equations, as a function of the bare initial values of K.
and Kj, and considering fixed values of the bare coupling
constants in Eq. (10) obtained by setting the nonuniversal
parameter 8, = 1/2 (see Appendices A and B). The numerical
results are obtained by setting 2 = 0.05¢ and varying values
of Vi /t ={1,3,5,7,9}. We observe that larger values of
2 would in principle enhance the extension of the g-phase.
However, they would also considerably increase the extension
of the Meissner phase, such that it is convenient to consider
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Q/t < 1 in order not to overshadow the properties of the
system around v = 1. This is also consistent with the validity
of the perturbation theory approach to the renormalization
group analysis, which relies on the bare parameters in Eq. (10)
being smaller than 7. Concerning the nonuniversal constant
Bo, its value is expected to weakly depend on Q2 and V, as
in analogous systems [62,63]. The phase diagram displayed
in Fig. 2 is qualitatively stable under small variations of this
parameter. In general, a smaller value of 3, increases the ratio
of the bare coupling constants g/h and favors the g-phase over
the A-phase.

Our strategy to determine the phase diagram is to set an up-
per threshold #* ~ ¢ and a lower threshold 7 ~ ¢/1000 to the
moduli of g and k. If, during the flow, any of the two coupling
constants increases beyond the threshold, we consider that the
system reached a strong-coupling (partially gapped) phase at a
value of the flow parameter [* € R such that g(I*) or h(I*) =
t* € R. Depending on which coupling constant is dominating,
we characterize the gapped phase as being of the g or % kind.
In these cases, the gap of the system can be estimated through
A ~ t*¢~" If instead, both the coupling constants drop below
the lower threshold, we conclude that the system flows into
the Luttinger/vortex phase. An example of the RG estimate
of the gap is depicted in the inset of Fig. 2(b) for the bare
value K. = 1 and K that varies between the gapped h-phase
(K; < 1) and the gapless Luttinger phase (K; > 1), separated
by the hard-core boson model with V, = 0, thus K, = K; = 1.

This strategy, however, must take into account possible
divergences of the Luttinger parameters: for certain ranges of
the bare Luttinger parameters, K diverges for a finite value
of the flow parameter / (see Appendix B for further details).
This happens, in particular, in regions where g dominates over
h, whereas h tends to flow below 7. When such a divergence
occurs, we label the resulting phase based on the dominant
coupling in proximity of the divergence. This corresponds to
lowering the upper threshold ¢* to a value around 0.2¢ for most
of the g-phase, and we represented this difficulty in Fig. 2(b)
by shading the regions where either divergences appears or
the numerical solution converges slowly. The divergences of
the Luttinger parameters suggest that the second-order RG
equations may not be sufficient to rigorously determine the
phase diagram and the third-order contributions should be
considered as well.

Therefore, the resulting phase diagram in Fig. 2(b) must
be considered as a qualitative phase diagram valid for small
values of the bare parameters in Eq. (10): we checked that
its features are essentially stable for V| < 5t [thus for a bare
value (10) & < 0.09¢]. Above this threshold, nonphysical fea-
tures appear for large values of K; indicating that higher orders
of the perturbation theory are not negligible in this regime.

The second-order results show that the g-phase is consid-
erably smaller than what expected by the simple first-order
scaling analysis, whereas the 4 and Luttinger phases increase
their extension. The behavior of the system close to the border
between the i and g phase cannot be precisely determined:
we cannot distinguish whether there is a direct phase transi-
tion between these two gapped phases or rather an extended
Luttinger region that separates them.

The phase diagram in Fig. 2(b) presents an overview of
the possible phases at moderate values of the bare coupling

constants g and h. The point Ky = K. = 1 represents the
ladder of hardcore bosons with V, = 0, which lies in prox-
imity of the phase transition between the Luttinger and the
h-phase. In such a scenario, O, is indeed marginal and the
role of the resonant O, interaction becomes crucial in deter-
mining the thermodynamic behavior of the system. This is due
to the second-order term, proportional to g which enhances
the value of / during the RG flow. Away from the resonance
X = 2ko, g averages to 0, and & is suppressed for repulsive
interactions, which yield K; > 1 [see Eq. (12) below]. At
resonance, instead, the coupling g not only can give rise to
the g-phase, but it also strengthens the s-phase.

To gain a more realistic insight of the system we restrict
our discussion to the case of hard-core bosons on the ladder
geometry. Based on the mapping of the single-leg subsystems
into fermions (see Appendix A) we can estimate the bare
values of the Luttinger parameters as

v, —1/2
27t sin(koa)

K./s(0) = |:1 + (12)

It is important to stress that these relations provide an estimate
of the bare parameters in the perturbative limit V, < 27t and
Q <t only. In this respect, we emphasize that there is an
important distinction between K. and K. The spin sector is
considerably influenced by the interaction O, which tends to
reduce the value of K, during the RG flow. This implies that,
even in the vortex phase, when O, is irrelevant, the physical
value of K displays major deviations from Eq. (12) which
considerably overestimates it. The discrepancy between the
bare value of K| in (12) and the corresponding renormalized
parameter is even more severe at the resonances. In the Meiss-
ner resonance, for example, the tunneling € gaps the spin
sector and K is supposed to diverge during the RG flow.
At v =1, instead, the coupling constant & can be further
increased by the g2 contribution and the flow of K; is modified
by g in a nontrivial way. For these reasons, Eq. (12) fails
in predicting the physical value of K; for v = 1 beyond the
perturbative regime V, < 2mt.

The charge sector, instead, is not affected by O, and, con-
sidering the system outside the resonance or away from the
g-phase, K, does not considerably change during the RG flow.
Hence, differently from the spin sector, Eq. (12) provides a
reasonable estimate for the physical value of K., and, indeed,
it qualitatively agrees with the K, parameter extracted from
the numerical tensor network simulation (see Fig. 5 and the
next section). Nonetheless, we expect major deviations for
very strong interactions: in the limit 2 — 0 the model can
be mapped into a spinless fermionic Hubbard model [11]
and K, — 1/2 for V) — oo. The lower limit of K, for large
V., however, depends on 2 and it is not captured by our
simple approximation, as showed by the comparison with the
numerical results in Fig. 5(d).

When we consider a system with fixed €2, thus a fixed bare
value of g, the phase diagram depends on the remaining three
initial values of the RG flow. However, based on Eqs. (10) and
(12) for the model of hard-core bosons, the bare parameters
K., K;, and h are determined from the value of V, only. This
implies that when we vary V|, the system defines a trajec-
tory in this three-parameter phase diagram. With respect to
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Fig. 2(b), we observe that for larger values of V, the g-phase
is shifted towards larger values of K.

The results from Eqs. (10), (11), and (12) predict an
evolution of the system from the gapless Luttinger phase
towards the gapped phases with increasing V,. We empha-
size, however, that this perturbative RG analysis provides
accurate results only for 4 < ¢, thus for sufficiently small
Vi k2. It is thus unclear whether the physical trajectory for
nonperturbative interactions evolves inside the g, or inside
the h-dominated phase. Therefore, in the next sections we
complement the previous RG predictions with the MPS results
bridging the gap into the nonperturbative regime.

V. NUMERICAL RESULTS

To obtain more quantitative predictions about the behavior
of the model, we simulated the ground state of Hamiltonian
(1) for hard-core bosons and system sizes on the order of typi-
cal experiments, i.e., L = 64. The simulations were performed
through density matrix renormalization group, adopting a
matrix product state (MPS) ansatz with open boundary condi-
tions and bond dimensions varying up to 512 different states
being kept in the approximation of the reduced density matrix.
This leads to a discarded probability of Ap < 1078, enough
to assume converged values roughly up to the eighth digit.

In the following we present the main features of the sys-
tem, including the estimates of the chiral current its main
fluctuations, correlation functions, and an overview of some
dynamical properties.

A. Chiral current

We focus on values of the density of hard-core bosons and
flux per plaquette in proximity to the v = 1 (for example, N =
48 and y = 37w /4 for L = 64), and we vary the interactions
V. and the flux yx. In particular, we vary the flux in units of
27 /L because all the observables in the open system display
strong and regular oscillations when continuously varying x.
The chosen discretization corresponds to the standard unit
quantum of momentum for translationally invariant chains.
We observe however that other choices are equally well jus-
tified: similar results are obtained by slightly larger/smaller
flux variations 27 /(L & 1) which, respectively, correspond to
the quantum of momentum and the flux quantum in ladders
with Dirichlet boundary conditions.

The chiral current j. is a crucial observable to detect the
onset of chiral phases of the ladder. In the case of noninteract-
ing bosonic systems, it shows the typical linear dependence on
the flux in the one-dimensional analog of the Meissner phase
followed by a shark-fin transition to a vortex phase [1,10], of
which we still spot the decaying tail on the left sides of Figs. 3
and 4. The corresponding operator reads

JC_Z_Z(67

Here the chiral current is defined based on the gauge choice
in Eq. (3) and we consider its average over the whole chain
length.

Figure 3 depicts j. for N =48 as a function of the flux
displacement around the resonance at filling factor v = 1. For

bepit —€2b] beyr ) +He. (13)

2t Vi/t
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FIG. 3. Chiral current j. as a function of the magnetic flux
Ax/m = x/m — n for different interaction strengths V, /t for N =
48, L = 64 and 2 = 0.05¢. For large interactions, the spin sector is
gapped at integer filling factors imposing the condition x /7 = n.
As a consequence, we observe a double-cusp signature of the chiral
current.

values of V| < 6t (not shown) the chiral current does not
display any discontinuity with respect to the vortex phase.
This is compatible with the system being in a Luttinger liquid
phase, consistently with the second-order RG results close
to K. = K; = 1 (see Fig. 2). When increasing V| in the ap-
proximate range (6t, 8t) the system develops a high peak in
the chiral current exactly at the resonance with filling factor
v =1 (blue and green curves). We interpret this peak as a
feature due to the system evolving towards the critical region
at the edge between the & and g phases. By increasing fur-
ther the interaction, at V, = 10¢, the current signature flattens
again. Finally, for 10r <V, < 18¢ the chiral current devel-
ops a double-cusp pattern, which is a hall mark of the two
commensurate-incommensurate phase transitions [59,64,65]
that separate a (partially) gapped commensurate and chiral
phase at the resonance (the /4 phase) from the truly gapless
vortex phase that dominates when the flux x is sufficiently
displaced from the resonant point.

Z I 0.625 .( ).687 . 0.75 (J.875§ +

3t e I*+ A

I i o if$x~

[ | ¥
—05 + : Y
++

~1.0 --:(IX¢+*$ +

. N :, - fi= 0.057|V/t ~15

05 0.6 0T7 0.8 0.9 X/

FIG. 4. Chiral current j. as a function of the magnetic flux x /7
for different average densities n = N/L (different colors and sym-
bols) of the system at V, /t = 15 and 2/t = 0.05. The position of
integer filling factor imposes the commensuration y /m = n and thus
shifts the double-cusp signature in the x axis.
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We observe that, for the system sizes we analyzed (L =
64), the chiral current cusps are considerably more evident
than the analogous cusps appearing for the pretopological
v = 1/2 Laughlin-like states at x = 4ko and y = 2w — 4k
(the latter being the particle-hole symmetric state of the
Laughlin-like state). This is in agreement with previous works
[11,32,34], in which the fully resolved Laughlin-like gaps are
presented for both larger interactions and larger system sizes.
Contrary to the weak and ambiguous signal in the proximity
of v = 1/2, we consistently observe three aligned j. points
across the resonance (see Figs. 3 and 4), which indicate a siz-
able gap. This allows us to conclude that the main signatures
of the v = 1 states are more feasible from an experimental
viewpoint.

The behavior of the chiral current in the & phase can be
deduced by the relation

_ 1 3Egs(x)

I oy (14)

jx =
in which Egg denotes the ground state energy. If the interac-
tion associated with amplitude % is the dominating term, a gap
in the spin sector is formed and the chiral current follows a
linear behavior with respect the flux x between the two cusps
and is predicted to cross O exactly at the resonance. This is
true provided there are no background effects such as the long
decaying tail from the strong shark-fin signal at small fluxes.
In reality, the resonance at v = 1 is thus established on top of
a slowly decaying background current which is a remnant of
the vortex phase.

We verified that, for different particle numbers, the position
of the two cusps of the chiral current shift accordingly to
the resonance following the relation y = 2k, (see Fig. 4): the
signature of a chiral phase at integer resonance appears indeed
for a broad range of particle numbers, and its features are
visible as long as the v = 1 resonance is sufficiently separated
from the Meissner phase of the system.

We point out that, in our simulations, the typical double-
cusp pattern of the resonant state is mostly evident for rung
interactions below V|, = 18¢ when 2 = 0.05¢. For larger val-
ues of V| the Meissner and melted-vortex states dominate
more than half of the phase diagram accessible through tuning
the flux, ultimately resulting in a poor resolution of the v = 1
signal.

B. Fluctuations and estimate of the Luttinger parameters

To better compare the numerical results with the RG pre-
dictions, we must locate the state of the system as a function
of V| in the phase diagram obtained by the RG equations (see
the colored dots in Fig. 2). To this purpose we must estimate
the Luttinger parameters K, and K; from the DMRG results.
The Luttinger parameters determine most of the features of
the ground state of the system, including its spin and charge
fluctuations, the decay of its two-point correlation functions
and even the dynamics of its excitations.

The first estimates we derive for the Luttinger parameters
are obtained by fitting the bipartite charge and spin fluctua-
tions [66]. In particular, we define

F5) = (IN* (1) conn.» (15)

where we introduced the total number of particles/the total
magnetization N/ in a bipartition of size £. In bosonization,
the leading order of these fluctuations read

c/s _i _ 2
F) = —([0c/5(£) — Oc/5(0)]7) (16)
T

and depend thus on the correlations of the density fields 6, /;.
If the corresponding sector is gapless, bipartite fluctuations
follow a logarithmic dependence (see Appendix C):

Fi(L) x 5‘; In[d(£|L)] + f5. an
T

In the above, d denotes the chord distance of open boundary
systems which is defined as

d(f|L) = £| sin(re/L)|. (18)

The function f.,; accounts for the total charge/spin fluc-
tuation of the system, which is related to the U(1) gauge
transformations in the corresponding sectors: if the total
charge /magnetization is conserved, f.;; = ¢ (small constant);
otherwise, f.;; can be approximated by a linear contribution
in the bipartition length, f.;s = y + fof, which equally dis-
tributes the total fluctuations on each site.

From the fits of the DMRG results we derive that the value
of K. remains essentially constant as a function of the flux
x [see Fig. 5(a)]. This is the expected behavior across the
Meissner-vortex phase, since the Meissner phase presents a
gap in the spin sector only. When considering the integer
resonance at x = 2kp, the independence of K. from the flux
X suggests that also in this case the physics at the resonance
is not determined by the charge sector. The situation is the
opposite for the spin fluctuations. In the Meissner phase the
spin fluctuations are maximized, the linear term given by f
in Eq. (17) is completely dominating over the logarithmic
contribution and K ceases to be meaningful in this gapped
phase [its estimate based on Eq. (17) is systematically wrong].
For large values of the fluxes in the vortex phase, K; 2 1,
consistently with having repulsive rung interaction. Finally,
exactly at the resonance, we can observe a dip in the fitted
value of K; [see Fig. 5(b)], which clearly shows that the spin
fluctuations are suppressed at the resonance, compatible with
the formation of a new gap in the spin sector. This is the first
indication that, at v = 1 and sufficiently large V|, the system
enters the h-phase, whereas the g-phase, expected to have a
gapped charge sector, is not reached.

Interestingly, we find also a signature of the pinned spin
sector by fitting the constant f; in the fluctuations of the
total magnetization: it is large in the Meissner and small, but
significantly increasing with respect to the vortex environment
[see the inset in Fig. 5(c)], inside the resonant state at filling
n = x/m, thus indicating relevant corrections to the logarith-
mic law.

Considering the system exactly at the resonance, we can
therefore fit the values of the Luttinger parameters as a func-
tion of V| based on Eq. (17). The results are used to define
the dots of the physical trajectory presented in Fig. 5(e). The
values of V| and of the fitted Luttinger parameters can then
be adopted as boundary conditions of the RG flow determined
by Egs. (11). The numerical solutions of these flow equations
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FIG. 5. Luttinger liquid parameters for hard core bosons, with
Q/t =0.05 and n = N/L = 48/64. (a, b) K./, for V, /t = 12, fitted
from the fluctuations of the total density/magnetization N./(£). We
clearly see the pinning of the spin fields in the Meissner phase
(shaded in blue) and in the resonance at x /7 = n (shaded in red).
The pinning of the spin field is further confirmed by fits of the con-
stant f; (c). Different colors represent different interactions V, /t €
{0 (blue), 6 (green), 12 (yellow), 16 (red)}. (d) Typical K, for hard-
core bosons in the vortex phase as a function of the interaction
V.. The green curve depicts the approximation in Eq. (12). (e) The
physical trajectory explored by the MPS simulations. As the color
changes from gray to red, the interaction V, is increased and the
system evolves from the Luttinger liquid to the Ah-phase. (f) The
RG-estimates of the energy gap calculated by using the extracted
values of K, and K, of our MPS simulations, presented in panel (e).
The so-obtained estimates predict a transition from Luttinger liquid
to h-phase with sizable energy gap in the thermodynamic limit.

allows for an estimate of the gap of the system based on the
final value of the flow parameter: A & t*¢~!" (see the previous
section). The so-obtained gap is represented in Fig. 5(f) as a
function of V, and itis in striking agreement with the previous
analysis of the measured chiral current: the gap is negligible
for V| < 6¢ and it opens in correspondence of the first peak of
the chiral current at V| ~ 6¢, 8¢.

The transition from a gapless to a gapped region around
V| ~ 6t is also consistent with the solution of the RG flow
equations. By comparing the fitted values of the Luttinger
parameters to the phase diagram in Fig. 2, we observe that

the system at V, = 0 lies in proximity of the edge between
the Luttinger liquid and the h-phase and it evolves close to
the boundary between Luttinger liquid, #- and g-phases for
intermediate values of V,. Beyond V| 2> 6t it enters the h-
phase. For stronger interactions, the predicted gap A remains
sizable, consistently with the system entering deep within
the h-phase. The observed plateau of the energy gap after
Vy /t ~ 12 in Fig. 5(f) is likely a consequence of the (partial)
breakdown of the second-order RG calculation. Nonetheless,
all the signatures observed in the numerical simulations are
consistent with the onset of a gap in the spin sector.

We emphasize that our numerical results and the estimate
of the spin correlation functions (see the next subsection)
suggest a tiny physical gap, such that the related correlation
length &, is comparable with a large portion of the system size
(L = 64). This implies a small nonuniversal constant which
should enter as a multiplicative factor in the estimate of the
gap presented in the inset of Fig. 5(f). As such, the inset
describes the general trend of the gap in arbitrary units.

We conclude our analysis of the suppression of the spin
fluctuations by considering its implication on the rung current.
When the 6, field becomes semiclassically pinned due to the
opening of the gap in the h-phase, the rung current must be
suppressed as well. For systems with open boundary condi-
tions, however, the rung current has a nonzero value at the
edges, and it is expected to decay in its bulk. This is what we
observe in our results [see Fig. 6(a)] where the rung current is
slightly suppressed in the bulk, compared to the vortex phase.

C. Correlations

In order to better characterize the gapped phase at the
resonance, we study the decay of several two-point correla-
tion functions. Indeed, the correlation functions allow us to
easily distinguish the Meissner and vortex phases and provide
further indications that the system develops a gap in the spin
sector at the integer resonance. In particular, the following set
of observables is studied in Fig. 6:

N AL + 1 +
Cs(lv ]) - <bl,Tbl,¢b]¢b],T> - <bl’¢bl’¢><b]¢b],T>v (]9)
Co ot i
Ceiy j) = (b b} by b, 1),
Gyy(i, j) = (b b, ). (20)

Ly“ iy

We rewrite them in bosonized form and find
C,(x, x') o e—([«/is(x)—</>s(X’)]2>fs(x7 ¥, QD
Celx, ') o e 1@ eOR 4 £ (e 2], (22)

Gy,y’(xa x/) o efé(lw)‘(x)*w),/(x’ﬂz)[1 + gy,y’(x, x/)]’ (23)

in which f/. and g, denote the corrections to the leading
order. In particular, the leading order is obtained by separat-
ing the p = 0 contribution from higher harmonics p # 0 in
Eq. (6).

It is most convenient to plot the above correlation functions
as a function of the renormalized chord distance

dex) = d(x — x'|2L)d (x + x'|2L)
S A Rhda 2

) (24)
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FIG. 6. (a) The local expectation values of the rung current.
(b—d) Correlation functions C,/; and G, 4 given by Eq. (23) versus
renormalized chord distance d given in Eq. (24). We see a clear
pinning of ¢, in the Meissner phase and at x /m = n, as visible by
the exponential behavior in C; at small and intermediate distances.

which highlights the leading order decay caused by the mo-
mentum field expectation values.

In particular, the connected part of C; shows the expected
behavior: it follows an algebraic decay (C; oc d /%) in the
vortex phase; it decays exponentially in the Meissner phase, in
which the related unconnected correlation rapidly saturates to
a constant due to the pinning of ¢; [the exponential correction
depicted in blue in Fig. 6(c) is due to the subleading terms f;];
finally, it displays an exponential tail in the A-phase at filling
v = 1 due to the gap in the spin sector and the pinning of 6
[see the bending in the red curve in Fig. 6(c)].

In contrast to Cy, C, decays algebraically everywhere (C, o
d~'/%), with no signature of any exponential tail [Fig. 6(a)].
This is expected as the charge sector remains always gapless.

Finally, the intrawire Green’s function G,, shows a clear
exponential tail in the h-phase [Fig. 6(b)], in agreement with
our statements above. In the Meissner phase instead, we find
Gyy ~ G, _, oc d~V/4K) which is predicted by the leading
order of Eq. (23).

D. Dynamics and velocities

To further probe the validity of our RG predictions, we
extract the velocities of the Luttinger liquid through the time
evolution of spin and charge excitations, which we can then
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FIG. 7. Density/spin propagation pattern of the excitation
[¥(t)) = e by 5 +|GS) for fixed flux and interactions linked to the
vortex phase (top row at interaction V, = 0, bottom row at V|, = 4¢,
all of them at flux x = 0.5947 and 2 = 0.05¢). We estimate the
velocity by fitting the outmost part of the expanding wavefront,
indicated by the red line.

pair with the outcomes of the Luttinger parameters extracted
from the bipartite fluctuations.

The velocities can be approximated by tracking the prop-
agation of a local excitation in time. For convenience, we
choose to generate a hole at the central site of the lattice: at
time t = 0 we apply by /> 4 to the (static) ground state |GS)
and evolve it in time, i.e., we simulate

1Y (1)) = eM'brs 4 |GS) (25)

and measure the local density/magnetization at all times
nes(xX, 1) = (Y (0l s(x, t = 0)|¥(2)).

By fitting the propagation of the wavefront in n./ (see
Fig. 7), we obtain the estimates of u./; presented in Fig. 8.
In the charge velocities, we do not expect to find a difference
between vortex and integer fillings, and indeed the simulations
overlap. On the contrary, we find two different curves dis-
tinguishing between non-Meissner and Meissner phase. This
behavior is expected as the pinning of the ¢, field in the
Meissner phase results in a renormalization of the effective
charge velocity.

An analog reasoning holds for the comparison of the spin
velocities in the vortex phase and v = 1 resonance [gray and
red lines in Fig. 8(b)]: O, is irrelevant for small values of
the rung repulsion V, such that the two u; velocities coin-
cide for small interactions. However, for v = 1 [red line in
Fig. 8(b)], u, displays a clear reduction beyond a critical value
of V| =~ 6r at which it separates with the corresponding veloc-
ity in the vortex phase. We interpret this as a renormalization
effect and it is a further evidence of a transition between the
vortex/Luttinger phase and the helical h-phase for V; ~ 6¢.
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TABLE L. The required interactions for the appearance of several
pretopological helical states in ultracold atom ladder systems are
compared. Bosonic pretopological states can be obtained from sim-
ple contact interactions, whereas their fermionic counterparts require
nearest-neighbor (NN) or next-nearest-neighbor [NNN] repulsions.

Laughlin Laughlin
Interactions v=1/3 v=1/2 h-phase
Fermions NNN [32] - NN [35]
HC bosons - Contact [32] Contact (this work)

0 4 8

Vot 00 04 08V /t

FIG. 8. Extracted charge (a) and spin (b) velocities from the
propagation of a hole. The colors/symbols represent the integer
resonance in red/ x, the vortex/Luttinger liquid phase in gray/A, and
the Meissner phase in blue/4-. We normalize the velocities to the
bare value at V, = 0. In general, we observe interaction dependent
velocities u. which are different in the Meissner and in the vortex
phase, but do not distinguish between vortex and ~-dominated phase.
In contrast, we note a significant splitting of the red and gray data
lines in u; after the critical value V /t g 6, signaling a phase transi-
tion. (c) Concerning the validity of Eq. (26), we see that it applies for
small interactions only (V| < t). If the spin fields are pinned from
relevant interactions, u.K, is suddenly renormalized, visible in the
sudden bending of the red curve around V, = 6¢. (d) Detail of the
charge superfluid stiffness for small interactions. u.K, is approxi-
mately constant in the vortex and v = 1 states, whereas it decreases
for weak interactions in the Meissner phase.

The estimates of u, and K allow us to evaluate the su-
perfluid stiffness in response to an infinitesimal variation of
the vector potential. Due to the Galilean invariance of the
interaction V| and the small values of €2, the bare values of
the superfluid stiffness are roughly constant in both charge and
spin sectors:

ug(l = 0)K,(I = 0) ~ ug = 2at sin(koa). (26)

The spin stiffness is expected to be heavily renormalized by
the interactions (which primarily act in the spin sector), and
we focus in the following on the extraction of the charge
stiffness only. Figure 8(c) refers to the quasiparticle prop-
agation in the charge sector for an interacting system. For
weak interactions, V| < ¢, the data display an approximately
constant charge stiffness for the vortex and resonant phases,
consistently with a Luttinger liquid phase [see panel (d)]. On
the contrary, in the Meissner phase the stiffness is renormal-
ized and reduced also for weak interactions. By increasing
the interaction, we see that the vortex and resonant states
behave differently starting from V /r £ 6. This is a further
confirmation that a gap in the spin sector is opened for larger
interactions, consistently with the onset of the i-phase.

VI. CONCLUSIONS AND PERSPECTIVES

Ultracold atoms hopping in ladder geometries and subject
to artificial magnetic fluxes are known to generate rich phase
diagrams. For commensurate values of the ratio between the
number of fluxes and the number of atoms, helical states with
anet chiral current may appear. The simplest and most evident
example of these helical states are the noninteracting Meissner
phase for bosons and the helical state at flux x = 2kp for
fermions. It is known, however, that additional strongly cor-
related helical states originate for suitable values of the filling
factor v and suitable interactions [31-39].

In this work, we argued that a two-leg ladder of hardcore
bosons at v = 1 is characterized by one of these strongly cor-
related helical phases of matter, which we called the A-phase.
We studied its signatures in terms of correlation functions,
fluctuations and dynamical evolution.

Our DMRG simulations show that the strongly correlated
v = 1 helical h-phase can be accessed in systems with contact
interactions only, similarly to the bosonic Laughlin-like state
at filling factor v = 1/2 [32]. With respect to the pretopo-
logical Laughlin-like state, however, the chiral current and
gap signatures we observe are considerably stronger for a
broad range of parameters when comparing systems with the
same particle density, repulsive interaction and interleg tun-
neling. This is particularly relevant for experiments based on
bosonic ladders like the Rb gases studied in the experiments
in Refs. [8,9].

Comparing our findings with the analogous fermionic sys-
tems, we also observe that the strongly correlated phases of
bosons can be reached through interactions with a shorter
range than their fermionic counterpart, as common for sev-
eral fractional quantum Hall states. This intuitively explains
also why the signals we detect for bosons at filling v = 1
are considerably larger than their fermionic counterpart (a
pretopological K = 8 fractional quantum Hall state) at filling
v = 1/2 [35]. In this respect, we find that bosonic systems
are more suitable for the experimental characterization of
these helical and strongly correlated phases of matter (see the
summary in Table I).

The onset of the bosonic s-phase is caused by a particular
mechanism that allows the interaction O, acting on the spin
sector of the theory to become relevant despite the presence
of repulsive interactions only, which normally suppress it.
This happens for bosons at the integer filling factor v = 1
and it is analogous to the pairing mechanism determining the
appearance of the pretopological K = 8 phase in fermionic
systems at v = 1/2 [35]. We stress that engineering (strong)
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pairing mechanisms analogous to the interaction O, is re-
cently at the focus of several proposals, due to its potential
for the development of topological and strongly-correlated
paired phases of matter [40,67]. The combination we adopt of
artificial gauge potentials, equivalent to a spin-orbit coupling,
and a commensurate particle density, can be adopted also in
this framework.
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APPENDIX A: BOSONIZATION OF THE MODEL
AND DERIVATION OF THE RENORMALIZATION GROUP
EQUATIONS

The field theoretical description of the hard-core boson
ladder model has been developed based on bosonization
techniques. In particular, the analysis of the behavior at the
resonance x = 2k requires a careful approach since there
are two commonly used approximations that cannot be ap-
plied in this case. The first is related to the use of several
harmonics to map the creation and annihilation operators of
the lattice model into the low-energy description in the con-
tinuum: the resonance at y = 2k appears evident only when
taking into account higher harmonics, as in the case of the
second-incommensurability effects studied in Refs. [44—46].
This is well-known in the analysis of the one-dimensional
limits of fractional quantum Hall states (see, for example,
Refs. [11,31-36]), where higher harmonics can also be in-
terpreted as multi-particle interaction processes appearing in
higher orders of perturbation theory [68—70]. The second
important characteristics is that, for bosons at v = 1, there
are two of these multiparticle processes that resonate and
compose O, in Eq. (9). These have exactly the same scal-
ing behavior under the RG flow and hinder the possibility
of adopting a simple semiclassical analysis. This situation is
analogous to the case of fermionic ladder models at v = 1/2
[35] and requires a second-order renormalization group anal-
ysis to be examined. In this context the role of O, in Eq. (7)
emerges and plays a crucial role, since it mixes and competes
with the mentioned g-terms.

In the following we will first present some of the details
related to the derivation of the effective Hamiltonian (7), then

we will discuss the main steps to derive the RG equation in
(11) and how we deal with them numerically.

1. Bosonization of the hard-core boson model

We mentioned that the analysis of the resonant states ap-
pearing at specific values of the filling factor v requires a
bosonization of the lattice operators in terms of the series
expansion of vertex operators in Eq. (6) (see, for example,
Ref. [61]). This series expansion relies on the nonuniversal
coefficients B, which are difficult to evaluate in nonintegrable
models like ours. Here we first obtain an estimate of the
most relevant of these nonuniversal parameters in our hard-
core bosonic model, f1,, via a Jordan-Wigner transformation
and the standard bosonization of fermions. This is rigorous
when considering separate chains, i.e., in the limit & — 0
and V; — 0. Then we briefly discuss our choice of setting
them to such value, 1, = 1/2, irrespective of Hamiltonian
parameters.

Hard-core boson operators b can be related to one-
dimensional fermionic operators ¢(*) via the Jordan-Wigner
transformation:

B = (=T oinelh) (AD)

X,y
Since the total density of particles, ny = Ny/L, coincides
for both bosons and fermions, the Fermi momentum is given
by ko = mny/2. The standard bosonization of the fermionic
operators (see, for example, Refs. [59,61]) reads

ko [e—ikoX+i[¢_v(X)+9y(X)] +eik0x+i[(/)y(x)_0y(x)]]

72 (A2)

Cry =
where 6, and ¢, are two pairs of dual fields obeying commu-
tation relations (® being the Heaviside function):

[ny (X/), Qﬂy(X)] = inéyy’G)(x/ —X),

and we did not introduce any Klein factor, due to the bosonic
nature of our particles which imposes operators in the two
different legs to commute.

The density of each pseudospin species can be approxi-
mated at first order in the harmonics expansion as

(A3)

1
n(x,y) ~ ;[ko — 0x0,(x)]. (A4)

The symmetrized form of the Jordan-Wigner string of
Eq. (A1) reads then
ei” Z_f<x n(j.y) + efiﬂ Z_i<x n(j.y)

2
ellhox=0,(0] 1 p—ilkox—6,(x)]

N 5 . (AS)

Substituting the expressions (A2) and (AS5) into Eq. (A1), we
obtain

k ) e—2ik0x ) eZika )
byy ™ 0 e e F20,01 el =20,(0] [
- 272 2 2

(A6)

(-1 )ZM n(i.y) —

By direct comparison with Eq. (6), we finally find 8, = 8_, =
1/2 for separate chains.
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In the limit & — 0, space-inversion symmetry implies in-
deed that B, = B_,. When considering €2 > 0, however, it
relates the B, and B_, coefficients of the bosons of different
legs. Since we focus in a regime with small values of /¢, we
assume hereafter that these coefficients are the same for both
the bosonic species, such that 8, = f_,. Even in the case of
more general coefficients, however, the analysis we present in
the following is not qualitatively affected.

Concerning a precise evaluation of these coefficients, the
estimate of the 8, parameters for general values of the interac-
tions, the transverse hopping €2 and the density of the system
remains an open problem. Analytical solutions and numerical
approximation are known only for (several) integrable models
(see, for example, Refs. [62,63]).

Our model, in particular, can be mapped into a fermionic
Hubbard model with interaction V| > 0 in the limit Q — 0
(see also a similar analysis in Ref. [11]). For the fermionic
Hubbard model in the limit V, — oo, the density modulations
with momentum 2k are suppressed [59], such that we expect
Bio to be equally suppressed for large V, . As we will discuss
below, setting the value of 8, might have important implica-
tions in the determination of the phase diagram through the
RG equations (11), due to the dependence of the bare values
in (10) on B,. However, since a precise estimate of B, for
large interactions is difficult to derive and beyond the scope
of our work, we decide to approximate it with the constant
1/2 irrespectively of the Hamiltonian parameters. This pro-
vides results compatible with the numerical simulations and
we checked that the phase diagram in not affected by small
variations of this parameter.

At this point, we are set to derive the g- and h-terms of
the effective model in Eq. (7). This is most conveniently done
by using the charge ¢ and spin s sectors of the model, as
introduced in Sec. III:

01 £0, prEe
ec/s ﬁ s De/s \/i . (A7)

We begin our analysis from a gauge-equivalent formulation

of the noninteracting Hamiltonian of Eq. (3):

Ho=—t Y [b] ey +He]-Q) [€*b] b, | +Hel.
X,y X
(A8)
Although this gauge choice breaks the translational invari-
ance, it turns out to be more convenient to make resonant
terms evident. By plugging in Eq. (6), the interleg hopping
term reads

0

-k .
HQ — — / d.X Qe’xxﬁ[e_lﬁ% + FO

B e—i2kox(e—i«/§(<ﬂs+93—9c) + e—iﬁ(ws—es—et-))] +Hec.,
(A9)

where we did not explicitly write additional fast oscillating
terms (F.O.) which are not resonant for y = 2k, i.e.,, v = 1.
A direct comparison with Eq. (7) yield the initial value of the
coupling constant g = B,kg/2m? in the RG flow, reported in
Eq. (10).

Coming to the interacting part of the model, we need
to supplement Eq. (A4) with additional higher-order os-

cillating terms [61]. The first of such terms can be esti-
mated from a point-splitting procedure, i.e., by evaluating
b'(x — 8x/2)b(x + 8x/2) with 8x = nko_'. In this way, we
obtain the correction:

1 .
n(x, y) ~ ;[ko — 0Oy ()1 + B2 sin [2kox — 26, (x)]}.
(A10)
The interspecies interaction becomes then
Hi— / dx—[(a 0c)? = (8:6,)°]
/ ﬁ 2 (A11)
where we neglected fast oscillating addends, boundary

terms (such as 9,6,) and less relevant ones [such as
(8,6,) cos(2+/26,)]. The initial value h = V, Bk} /27? for the
RG flow, reported in Eq. (10), is then readily identified. The
first line of Eq. (All) is responsible for giving the initial
condition for the Luttinger parameters K, of Eq. (12).

2. Renormalization group equations

The second-order renormalization group analysis of the
Hamiltonian (7) follows the analogous fermionic case at fill-
ing v = 1/2 [35]. We apply, in particular, the Wilsonian RG
in momentum space at second order. Here we derive the
corresponding flow equations (11) in detail for the resonant
regime, i.e., x = 2ko.

It is crucial to anticipate here that we consider the interac-
tion terms % and g in Eq. (7) as a perturbation of the gapless
Luttinger liquid. Therefore, we expect our results to be valid
when the bare values of g and /& are much smaller than 1.
In particular, by assuming 2 = 0.05 and N/L = 48/64 as in
the numerical simulations, we obtain that the general features
of the phase diagram presented in Fig. 2(b) are stable until
Vi < 5t [cf., Fig. 2(a)]. Beyond this threshold nonphysical
features emerge which are not compatible with the numerical
simulations, thus indicating that a second-order perturbation
approach fails beyond this limit.

For each of the bosonic fields we distinguish fast and
slow modes, separated by an effective cutoff in momentum
space that we label A. Furthermore, we introduce an ultra-
violet momentum cutoff A > A. The fast oscillating modes
are characterized by A < k < A and we are interested in the
limit A/ A = 1 + dl, with d! infinitesimal. The bosonic fields
(g = c, s) can thus be decomposed into the following:

Pq(xX, 1) = @s,q(x, 1) + @14 (x, 1), (A12)

0,06, 1) = .4 (x, 1) + b 4 (x, 1). (A13)

Moreover, we resort to Euclidean space, i.e., we use coordi-
nates z = (x, T = it), and we denote d’z = dxdt, such that
the following duality relations hold:

81—9]‘ = iqujax(pj,

JUj
drg; = z%axej. (A14)

J

We separate the action of the resonant model into a
Gaussian and an interacting part, including both the g-
and h-terms of Eq. (7), and we consider the latter as a
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perturbation:

K, .
S=8+S = %/dzz[z M—"(afgoq)2 +Kquq(ax¢q)2} +/d2x{g(og +0)) + h cos[2+/26,(x)]}.

g=s.c 4

(A15)

Our aim is to obtain an effective action for the slow modes only, by integrating out the fast degrees of freedom:

Setr(A) = So(ps) — In (e F) xSy (gs) + (Si(ps + ¢1))
A

where the expectation values are taken on the (fast) Gaussian
action only, and we identified the effective action at the second
order of perturbation theory. In the following we make exten-
sive use of the following well-known key property of Gaussian
integrals (G):

<ei Zk ak¢k> — 6_% Zk,k/ (27329 (¢k¢k’>g ,

g (A17)

with ¢ the fields over which the integration is carried out.
The Gaussian correlation functions for the fields in first
order of In(A/A) read

Mdk Jotkr)y  Cu(r) A
<§0f,q(Zl)§0f,q(ZZ)>f = /1:\ 7(}{7 = ;—Kq In X, (A18)
C,(NK, A
(Gf,q(ZI )Gf,q(ZZ»f = T In X (A19)

Here the logarithm captures the scaling behavior, and C,(r)
u2(t1 — ©)? + (x1 — x2)?, such that

C,(0) = 1. In the following we will consider C,(r) to be
suitably short-ranged; in the case of a sharp cutoff, C,(r) =
Jo(Ar) and the Bessel function Jy does not satisfactorily
fulfill this assumption, but C,(r) can be made sufficiently
short-ranged with more refined cutoffs. In particular, such an
optimization can be achieved by a deformation of the integra-
tion fzi\ dp — fooo dpf.(p, A) with f, = A"/(p" + A"), in
which the sharp cutoff is realized for n — oo. An analytic re-
sult can be obtained in case of n = 2, i.e., C;(r) = ArK((Ar)
with the modified Bessel function K; of the second kind.
This function has an exponentially decaying asymptotic form
7K1 (z) &~ /zm /2%, which is thus sufficiently short-ranged.
To be more precise, the numerical values of zK;(z) above
machine precision are confined to the interval 0 < z < 13,
and moreover K;(27) =~ 0.0062 is already pretty small for
short distances of » ~ 27 /A. For this reason, we will later
truncate the space-time integrations of a product containing
the function C; to the interval (0, o) in which the cutoff pa-
rameter o ~ 27 /A = a is on the order of the lattice spacing.

is a function of r =

J

,2f(v9”+u 052) =810

(S7 (s + @0 — (Sr(ps +o)F | +--- . (A16)

B A?

1
U}

For the sake of convenience, let us rewrite the interacting
part of the action as

h
Si=y. / d*z <§(9; +gy O;,M), (A20)
v n
where we introduced the shorthand notation:
OZ _ iuzfe and Ov _ wf(G stbs) (A21)
Thus we obtain for the first- order contribution:
2 A 2K;
(O = "2/ =400 = 0“(A> , (A22)
(or.) = V2O A1) ,—(O2) 7} H(00))
AN 2 (Kt g +K)
= Og”’ﬂ <X> , (A23)

where the operators on the right-hand sides of the equations
are intended to be constructed with slow fields only, and we
dropped extra labels for simplicity. Together with the factor
(A/A)?* from the rescaling of the integration domains for
the new action after a RG (infinitesimal) step, and keeping
in mind that A/f\ = 1+dl, Egs. (A22) and (A23) return
S; with the usual first-order dependence of the couplings
g and h on the scaling dimensions, D, = 2K, and D, =
(K. + K; + K71)/2, in the RG Eq. (11).

The many addends of the second-order contribution could
be compactly written as

B-A=)" {h—z(ovoﬂ) L > ((or,.0))
4 h~h [feo ) & "h [fo

v,/ "

HOLOp ) + 8 D_105u0; )

o

i| . (A24)

where we introduced the connected part of the quadratic
expectation values, i.e., (##,), = (#1#) — (#){#). It is
straightforward to obtain which RG correction each addend
gives rise to (hereafter, we drop the integration symbol over
the Euclidean space, for the sake of space):

(000}, — PifemS 00l — 1] & —4uv' K dl V2000 (), (A25)
(Ov Ov’) N eiﬁ(vﬂ-,l—W/’s,l-‘rvuﬂ,l-‘rzv'@s.z)e—((93>f+<</7.;2>1+5<9x2>1) [8—4/“’“/(0&19&2)1 —1]
~ —2uvv'K,dl ei«/i(v(i,l7vws,1+w0&1+2u’9,\_z)CS(Z12)’ (A26)
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(0)0; )., — (0:,0)) (21 < 22). (A27)

(Ov o) i\/i(vec.]+U/9c,271)(ﬂx,l7V’W.Y,Z+VM65',1+V,ﬂ/9x,2)672(<0(2>f+<‘/7v2>1+(0v2)f) [eizvv,«gc,10('.2>f+(§0.r.]¢.f.2>f+“ﬂ/<0.r.]9x,2)f) 1]

P gu) — —€

; , / i~ 1
~ w'dl elﬂ(ver,1+v Oc 2= V@51 =V @s2HV by 1 +V'140;2) |:K¢~CC(Z12) + (E (A28)

A

+ I'LH’/K.Y) Cs (212)] s

where we indicated the dependence on the Euclidean coordinates z; and z, by simple labels, and we took into account the
additional Baker-Campbell-Hausdorff phase factor arising in Eq. (A28).

We can now split the integrals into the integral of the center of mass coordinate (z; + z2)/2, and the relative coordinate z;, =
(z1 — 22), and recall the assumed short-range character of the C, functions; see the previous discussion, just below Egs. (A18)
and (A19). This constrains the two points to be in a neighbourhood of size z >~ (o, o /u,) from each other, where « is of the
order of the lattice spacing a. The effect is twofold: first, this allows us to Taylor-expand the field operators in Eqs. (A25)—(A28);
second, a factor o? /uq is generated by the integration. Henceforth we group the addends of Eq. (A24) according to their RG
behavior:

(1) The terms with v' = —v in Eq. (A25) contribute to the quadratic part of the action:

K3
+ dl 4h* o* [(39) + (89)2:| —dl 4h* o* [ (3:95)* +u3(8x(p3):|, (A29)
s l/tS Ug
as well as those with v/ = —v and /' = +u in Eq. (A28):

p1 P2

K. 1/1 K. 1/1
—di2g o* {[(0:0, — 0c)* + (8,6 | = + — | — + K, 0:0. — 0:0)> + (3:0,)*] | = + = — + K,
gat[( 9)” 4 (3:65)°] P s +[( 3:0)* + (0:6,)7] 3+ : gt

1 1 1 K? p
~ +dl2g o { —(3e9e)” K2 —p1 + (D)’ Kltteps + —(0:9,)° [Tp. - uspz] + (000 [ K2 — _‘]}

)

(A30)

where we dropped two terms mixing ¢, and 6., thus the spin and change sectors. Such terms break the possibility of rigorously
splitting the system into these separate sectors and would require us instead to introduce a unitary matrix, dependent on [, to
diagonalize the Gaussian part of the action at each scale. For the sake of simplicity, however, we neglect this mixing, and we

consider only the (standard) correction to the Luttinger parameters K and K;

(2) The terms with v/ =

—vand 4 = —u in Eq. (A28) generate a correction to Oy:

1 1 1
+dl2g%a” cos (2/26;) |:Kc— + <— — KJ) —]; (A31)
MC KS uS
(3) Finally, the terms with v' = —vpu in Eqs. (A26) and (A27) give rise to a contribution proportional to O, + Og:
—dl 2gha2K Z cos[vV2(6: — @5 — wbs)1; (A32)

(4) All other terms are considerably more irrelevant.

In our numerical solutions of the RG equations, we
checked that small variations of the nonuniversal parameter
« around the lattice spacing a do not qualitatively affect the
phase diagram in Fig. 2(a), consistently with having a suffi-
ciently sharp cutoff function C,,.

Finally, we point out that, differently from the standard
sine-Gordon interactions, the terms in Eq. (A30) generate
also a nontrivial flow of the velocities. In particular, there
are second-order corrections to u. and u, proportional to
dlg*(u* — u?)/u?. In the regime with a bare value g < t and
small interactions, the flow of the velocities is expected to
have only negligible effects, and we do not take into consider-
ation their flow. To observe a quantitative difference between
the bare and physical values of the velocity, we can compare
the gray (vortex phase) and red (v = 1 resonance) curves

(

in Fig. 8. In the vortex phase the system is described by a
standard sine-Gordon model which fulfills Lorentz invariance
(thus the velocities do not flow). Only a small difference in
ug can be observed when comparing the red and gray curves,
thus confirming that the flow of the velocities is practically
negligible in our regime of interest.

APPENDIX B: NUMERICAL SOLUTIONS
OF THE RENORMALIZATION GROUP EQUATIONS

In the following, we provide additional information about
the numerical solutions of the renormalization group equa-
tions presented in Egs. (11).

Figure 2 is obtained by explicitly solving the differ-
ential equations using an implict Runge-Kutta method, in
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FIG. 9. (a)-(f) Flow of the couplings g, & and Luttinger parameters K., K, versus the flow parameter / at fixed V, = and 2 = 0.05¢. (g)
The initial conditions of K.(I = 0), K;(I = 0) are indicated in the phase diagram. We focus here on the second-order RG refinements deep
inside the phases predicted by the first-order RG equations. The Luttinger liquid in the top right part of the phase diagram remains fairly
standard, as indicated in panels (a) and (b): Initial values of the couplings flow exponentially towards zero, and the Luttinger liquid parameters
remain constant. The A-dominated phase is slightly refined: we note the expected exponential growth of the coupling while the Luttinger
liquid parameter K flows towards zero. On the contrary, the g-dominated phase is drastically refined, as the Luttinger parameters show sudden
divergences [see panels (e), (f), and an explanation in the text], causing the couplings to diverge accordingly. These divergences are followed by
a nonmonotonicity in the growth of the couplings, which is better visualized by gradually moving the initial values of K./, from the Luttinger

towards the g-dominated phase, a path we present in Fig. 10.

particular by fixing the initial/boundary conditions of
Egs. (11). In this four-dimensional phase space, we put
on the axes the Luttinger parameters before the RG flow
K, = K,(I = 0), while fixing g/h(l = 0). We thus manage to
present two-dimensional cuts of the general phase diagram
which display in which regions of these bare parameters the
operators are relevant. Representatives of the solutions of
the RG equations for €2 = 0.05¢ and V, =1t are presented
in Fig. 9. The flow of the Luttinger parameters in the MPS
explored region is in general slow, and the bare values roughly
correspond to the renormalized ones at [ = [* [see Figs. 9(c)
and 9(d) presenting the flow in the h-phase]. This way we
can conveniently combine the phase diagram and the path
of our MPS simulations. In particular, feeding the extracted
Luttinger parameters from the MPS simulations as initial con-
ditions, we confirm by estimating the energy gap A presented
in Fig. 2(b) that the RG predicts a flow inside the / phase in the
thermodynamic limit, after a critical value of V|, ~ 6. It must
be stressed that the estimate of the RG predicted energy gap
are given in arbitrary units, and, being unable to resolve it with
the MPS simulations, its quantitative size remains unknown.
By observing the different points of the phase diagram
presented in Fig. 9, we observe a Luttinger liquid in which
the couplings flow very fast towards the lower threshold 7
and the Luttinger parameters remain constant [Figs. 9(a) and
9(b)]. In the h-dominated phase [Figs. 9(c) and 9(d)], we
always find a fast exponential growth of the couplings, hit-
ting the upper threshold at [ = [* < 6. On the contrary, the
entire g-phase suffers from divergences due to a divergent
K; [see Figs. 9(e) and 9(f)]. These divergent solutions of the

RG equations can be qualitatively understood by assuming
that K reaches a large value K > 1, K, during its flow: in
this limit, we can approximate the dominant part of its RG
equations with % = aKk?, which upon integration becomes
K' = \/c —3al, diverging at | = ¢/3a.

Interestingly, the second-order RG equations result in a
nonmonotonic curvature of g(/) and h(l) in parts of the
Luttinger liquid phase (see Fig. 10). In this cases, the Luttinger
parameters reach asymptotic values such that the coupling
constants /& and g decay to zero after a nonmonotonic flow.
This happens in particular in the portion of the Luttinger
liquid phase where g is predicted to be relevant according to
a simple first-order analysis. By examining the flow in prox-
imity of the g-dominated phase, we observe that i flows to
negative values before decaying towards zero. Naturally, this
nonmonotonicity of the coupling constants connects smoothly
to the reported divergences of the g-dominated phase in which
the asymptotic value of K appears to be infinite. In conclu-
sion, the divergence is not caused by numerical errors, but it
is rather a unique feature of the second-order RG equations in
proximity of the g-dominated phase. This also suggests that
a more thorough study of the intricate g-phase must include
third order corrections.

Concerning the velocities of the system, their value is con-
sidered to be approximately constant throughout the RG flow
and has been estimated from the relation of Eq. (26), result-
ing in v, = vo/K,. This relation, however, is supposed to be
affected by large deviations for large values of the interaction
V., as suggested by the behavior in Fig. 8(b), which shows
ugy asymptotically reaching a minimum value ~u/4 for large
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FIG. 10. (a)-(f) Flow of the couplings g, & and Luttinger parameters K., K, versus the flow parameter / at fixed V, =t and = 0.05¢. (g)
The initial conditions of K.(I = 0), K,(I = 0) are indicated in the phase diagram. By extending the first-order RG approximation to second
order, we note that the Luttinger liquid phase grows drastically larger, reaching far inside the region predicting the relevance of g at first order.
This Luttinger liquid phase is not trivial, as the Luttinger parameters flow to asymptotic values significantly different from the initial ones,
followed by a rapid change of the coupling amplitudes. We observe thus a subtle nonmonotonic behavior of the coupling constants, which
smoothly extends towards the g-dominated region. Towards the g-dominated region the asymptotic value of K approaches infinite. We report
thus a sudden divergence of K; inside the g phase [see Fig. 9(f)], demonstrating the breakdown of the second-order RG approach as indicated

by the shaded regions in the phase diagrams.

interactions. The failure of the approximation vy = vy /K, for
large interactions concurs to increase the errors in the RG flow
predictions for this strong interaction regime. In particular,
we see that in the off-resonant case g = 0, the RG flow er-
roneously predicts a new onset of the / phase for V| > 6r at
large values of K;. This is a combined effect of the limitations
of the second-order perturbation theory and the approximation
vs = vo/K;, which lead to dK;/dl o« —h’K? at the beginning
of the flow. In this specific regime of large interactions, this
decrease of the Luttinger parameter K, appears to be too fast
and yields a nonphysical reappearance of the 4-phase for large
V| which is not observed anywhere outside of the resonance in
our numerical simulations. Based on the numerical solution of
the RG equation, we conclude that our RG results are reliable
only in the range V| < 5¢ when addressing large values of the
Luttinger parameter Kj.

APPENDIX C: FURTHER DETAILS ABOUT
THE CORRELATION FUNCTIONS

The calculation of the correlation functions of the 6 and ¢
fields for finite systems depends on the boundary conditions.
In principle, we should separately consider the charge and
spin sectors. For the charge sector indeed, no particle can
tunnel in or out of the system from the boundaries, and the
charge current must exactly vanish at the boundaries. There-
fore d,¢, = 0 for both x = 0 and x = L. For the spin sector,
instead, the total spin density is not conserved and, although
the chiral current must vanish in average at the boundaries,
the previous Neumann boundary conditions for ¢y is too re-
strictive, as demonstrated by the nonvanishing rung current at

the edges of the system [Fig. 6(d)]. Hence, one should con-
sider more general kinds of boundary conditions [71-74]. We
expect, however, the deviation from the Neumann boundary
conditions to be small (proportional to €2/t), and, also for
the spin case, we will consider d,¢; = O at the edges. Based
on the construction in Ref. [61] (see also Refs. [71,72]), we
can define the charge and spin fields (at time ¢ = 0) in the
following form:

»o 1 ke ik
VK0, =¢O+Z m[e' “hex+eab] ], (CD)
’ k X
Z sgn szL bqk+e iax bl ] (C2)

f Nl

where Y labels the sum over the even integers k, with k # 0
from —oo to 4+-oc0. Here b, labels two sets of bosonic anni-
hilation and creation operators related to the spin and charge
sectors respectively. In order to fulfill the Neumann boundary
conditions, we must impose

byr =bg k. (C3)
From the previous relations we derive
K d(x —x'|2L)
0,(x)0,(x)) = ——L1In | ————2|, C4
(0 (x)04(x")) 5 In |:d(x+x’|2L) (C4

1 / /
3K, In[d(x — X' |2L)d(x + X'|2L)]. (C5)

(@)@, (X)) =

Considering the case x’ — 0, and neglecting functions of
x' only, we obtain the behavior of Eq. (17) for the spin and
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charge fluctuations. Given the deviation from the Neumann
boundary conditions of the spin sector, however, we must

account for an additional weak space dependence represented
by the function f(£).
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