000904515 001__ 904515
000904515 005__ 20240506205521.0
000904515 0247_ $$2doi$$a10.1103/PhysRevResearch.3.L022017
000904515 0247_ $$2Handle$$a2128/30732
000904515 0247_ $$2altmetric$$aaltmetric:106759151
000904515 0247_ $$2WOS$$aWOS:000655983400007
000904515 037__ $$aFZJ-2021-06085
000904515 082__ $$a530
000904515 1001_ $$0P:(DE-Juel1)187565$$aContessi, Daniele$$b0
000904515 245__ $$aCollisionless drag for a one-dimensional two-component Bose-Hubbard model
000904515 260__ $$aCollege Park, MD$$bAPS$$c2021
000904515 3367_ $$2DRIVER$$aarticle
000904515 3367_ $$2DataCite$$aOutput Types/Journal article
000904515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714997915_12919
000904515 3367_ $$2BibTeX$$aARTICLE
000904515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904515 3367_ $$00$$2EndNote$$aJournal Article
000904515 520__ $$aWe theoretically investigate the elusive Andreev-Bashkin collisionless drag for a two-component one-dimensional Bose-Hubbard model on a ring. By means of tensor network algorithms, we calculate the superfluid stiffness matrix as a function of intra- and interspecies interactions and of the lattice filling. We then focus on the most promising region close to the so-called pair-superfluid phase, where we observe that the drag can become comparable with the total superfluid density. We elucidate the importance of the drag in determining the long-range behavior of the correlation functions and the spin speed of sound. In this way, we are able to provide an expression for the spin Luttinger parameter $K_S$ in terms of drag and the spin susceptibility. Our results are promising in view of implementing the system by using ultracold Bose mixtures trapped in deep optical lattices, where the size of the sample is of the same order of the number of particles we simulate. Importantly, the mesoscopicity of the system, far from being detrimental, appears to favor a large drag, avoiding the Berezinskii-Kosterlitz-Thouless jump at the transition to the pair-superfluid phase which would reduce the region where a large drag can be observed.
000904515 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000904515 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904515 7001_ $$00000-0001-6368-9675$$aRomito, Donato$$b1
000904515 7001_ $$0P:(DE-Juel1)177780$$aRizzi, Matteo$$b2
000904515 7001_ $$00000-0002-8682-2034$$aRecati, Alessio$$b3$$eCorresponding author
000904515 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.3.L022017$$gVol. 3, no. 2, p. L022017$$n2$$pL022017$$tPhysical review research$$v3$$x2643-1564$$y2021
000904515 8564_ $$uhttps://juser.fz-juelich.de/record/904515/files/PhysRevResearch.3.L022017.pdf$$yOpenAccess
000904515 909CO $$ooai:juser.fz-juelich.de:904515$$popen_access$$pdnbdelivery$$pdriver$$pVDB$$popenaire
000904515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187565$$aForschungszentrum Jülich$$b0$$kFZJ
000904515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177780$$aForschungszentrum Jülich$$b2$$kFZJ
000904515 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000904515 9141_ $$y2022
000904515 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000904515 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000904515 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000904515 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
000904515 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-16T10:08:58Z
000904515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000904515 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000904515 920__ $$lyes
000904515 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000904515 980__ $$ajournal
000904515 980__ $$aVDB
000904515 980__ $$aI:(DE-Juel1)PGI-8-20190808
000904515 980__ $$aUNRESTRICTED
000904515 9801_ $$aFullTexts