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Collisionless drag for a one-dimensional two-component Bose-Hubbard model
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We theoretically investigate the elusive Andreev-Bashkin collisionless drag for a two-component one-
dimensional Bose-Hubbard model on a ring. By means of tensor network algorithms, we calculate the superfluid
stiffness matrix as a function of intra- and interspecies interactions and of the lattice filling. We then focus
on the most promising region close to the so-called pair-superfluid phase, where we observe that the drag can
become comparable with the total superfluid density. We elucidate the importance of the drag in determining
the long-range behavior of the correlation functions and the spin speed of sound. In this way, we are able to
provide an expression for the spin Luttinger parameter KS in terms of drag and the spin susceptibility. Our
results are promising in view of implementing the system by using ultracold Bose mixtures trapped in deep
optical lattices, where the size of the sample is of the same order of the number of particles we simulate.
Importantly, the mesoscopicity of the system, far from being detrimental, appears to favor a large drag, avoiding
the Berezinskii-Kosterlitz-Thouless jump at the transition to the pair-superfluid phase which would reduce the
region where a large drag can be observed.
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I. INTRODUCTION

The dynamics of multicomponent superfluids, ranging
from neutron stars [1] to superconducting layers [2], is
supposed to be crucially influenced by an intercomponent
dissipationless drag. Such an entrainment was first discussed
by Andreev and Bashkin in 1975 to describe the three-fluid
hydrodynamics of a mixture of 3He and 4He superfluids [3]. In
the previous works, the constitutive relations for the superfluid
momenta were assumed to involve the transport of particles of
one kind only [4–7]. Andreev and Bashkin instead introduced
a superfluid stiffness matrix n(s)

αβ , whose off-diagonal elements
make it possible that a velocity vβ in one component generates
a (super)current jα in the other component, even without
collisions:

jα =
∑

β

n(s)
αβvβ. (1)

Although the Andreev-Bashkin (AB) effect should be generic
for multicomponent systems, it has never been directly ob-
served (e.g., in helium, due to the very low miscibility of the
two isotopes) and its dependence on the microscopic parame-
ters has been obtained only for a few cases.

The high degree of control reached in manipulating ul-
tracold multicomponent Bose gases has sparked the hope
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of having a platform for a detailed experimental study
of the collisionless drag. However, a sizable entrainment
requires relatively large quantum fluctuation beyond the
mean-field equation of state. In the most standard con-
figurations, i.e., three-dimensional gases [8,9], increasing
quantum correlations amounts to increasing the interactions.
This is technically feasible, but only partially viable since
strong interactions lead to large three-body losses, very much
reducing the lifetime of the gas. Fortunately, other routes are
available to increase the role of quantum correlations, while
keeping the system stable.

Very recently, configurations with reduced dimensionality
have been proposed: in particular, in [10] it has been shown
that when approaching the molecular phase in a double-
layer dipolar gas system, the drag can become increasingly
large. In [11], one-dimensional mixtures close to the so-called
Tonks-Girardeau regime have been shown to exhibit a large
entrainment.

Another possibility is to consider Hubbard-like models, by
putting cold atoms in deep optical lattices. In this way, it is
possible not only to realize strongly interacting superfluids
with reduced three-body losses, but also to study new phases
that do not appear in continuous systems. An analysis of the
AB effect in a two-component single-band two-dimensional
Bose-Hubbard model can be found in [12], where the effect
of the proximity to the Mott insulating phase is discussed
in detail.

In the present work, we give a detailed account of the
AB drag in two-component Bose-Hubbard model on a one-
dimensional ring. The reason is manyfold. The ring geometry
is very convenient to study supercurrent related phenomena,
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FIG. 1. Sketch of the two-component Bose-Hubbard ring with
hopping parameters t̃α = tαe−i2πφα/L , on-site intraspecies interactions
Uα , and interspecies interaction UAB. The two fluxes φα pierce the
ring and give rise to bosonic currents jα in the ground state.

both theoretically and experimentally [13]. The presence of
the lattice allows us to have a finite range of parameters in the
attractive regime where the two-superfluid state is stable and
the drag can be strongly enhanced [10,12]. Moreover, differ-
ently from all the above-mentioned works based on quantum
Monte Carlo (QMC) techniques, here we employ a tensor net-
work approach, thus paving the way to study time-dependent
phenomena.

We show how finite-size effects might actually increase
the visibility of the collisionless drag, by circumventing the
sudden jump that characterizes the phase transition to a
pair-superfluid phase in the thermodynamic limit. This is
particularly relevant for typical one-dimensional (1D) cold-
atomic setups, where the particle number is comparable to
our numerical simulations. In this respect, hyperfine state mix-
tures of (39)41K atoms, or 41K-87Rb mixtures (e.g., [14–18]),
whose interspecies interaction can be tuned by exploit-
ing Feshbach resonances, seem very promising to achieve
the regimes where the elusive AB effect can finally be
observed.

Furthermore, after determining the strength of the AB ef-
fect in various regimes, we use our microscopic approach
to determine the susceptibility of the system and the rele-
vant correlation function to extract the Luttinger parameter
KS . We show that the latter satisfies a general hydrody-
namic relation with the collisionless drag, a relation which
is rooted in the fact that the f -sum rule for the spin chan-
nel is not exhausted by single-phonon excitations (see [19]
and the Supplemental Material of [11]). In particular, our
results show how a perturbative Luttinger liquid description of
the Bose-Bose Hubbard model must include an intervelocity
interaction.

II. MODEL

As sketched in Fig. 1, we consider a two-species
Bose-Hubbard Hamiltonian, H = HA + HB + HAB, on a ring

with L sites,

Hα =
L∑

x=1

[
−(t̃αb†

x+1,αbx,α + H.c.) + Uα

2
nx,α (nx,α − 1)

]
,

HAB = UAB

L∑
x=1

nx,Anx,B, (2)

where b†
x,α (bx,α ) is the bosonic creation (annihilation) op-

erator and nx,α = b†
x,αbx,α is the number operator at site x

for the species α ∈ {A, B}. Physically, the two species can
be two hyperfine levels of atoms, two band indices, or two
different atomic elements or isotopes. The single-species
Hamiltonian Hα accounts for the hopping between neighbor-
ing sites, with t̃α = tαe−i2πφα/L and tα, φα ∈ R+, and for the
on-site repulsion characterized by the parameter Uα > 0. The
fluxes φα piercing the ring are introduced in order to com-
pute the superfluid currents and densities [see Eqs. (4)–(6)]
and are equivalent to twisted periodic boundary conditions
(PBCs) [20]. The Hamiltonian HAB describes the interspecies
on-site interaction—responsible for the collisionless drag
phenomenon—with strength UAB.

We limit ourselves to a zero-temperature, Z2 symmetric
mixture: tα = t , Uα = U , and filling να ≡ Nα/L = ν/2, in
terms of the number of atoms, Nα . The phase diagram of the
1D model is very rich and has not yet been determined with
the same accuracy as in higher dimensions [21,22]: to our
knowledge, the most complete analysis can be found in [23]. It
is beyond the scope of the present work to bridge this gap and
the full phase diagram will be reported elsewhere [24]. For the
purpose of the present study, we are interested in only two of
the possible phases: the two-superfluid (2SF) phase and the
pair-superfluid (PSF) phase. The 2SF phase is characterized
by both components A and B being superfluid. The low-energy
spectrum consists of two gapless linear (Goldstone) modes
corresponding to a density (in-phase) and a spin (out-of-
phase) mode. In the PSF phase, the two components are paired
and the spin channel acquires a gap [25]. One of our goals
here is to determine the superfluid density matrix in the 2SF
phase while approaching the PSF, where the collisionless drag
should saturate to its maximum value [10,12].

We resort to a matrix product states (MPS) ansatz to deal
with the full many-body problem. The model (2) is indeed
not exactly solvable and our numerical treatment is an almost
unbiased approach to it. We overcome the difficulties related
to PBCs by employing a loop-free geometry of the tensor
network and shifting the topology of the lattice into the matrix
product operator (MPO) representation of the Hamiltonian.
The idea consists essentially in introducing nearest-neighbor
couplings along a snakelike enumeration of the physical sites
(see the Supplemental Material [26]). In this way, we can
reliably compute the relevant quantities for systems up to
L = 96 sites, achieving expectation values (e.g., of densities
and currents) homogeneous up to 0.3% along the ring.

III. SUPERFLUID DENSITIES AND COLLISIONLESS
DRAG

In order to determine the superfluid density matrix, we
need to compute the currents on the ring. As usual, the
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FIG. 2. The superfluid currents jA and jB in the presence of φA

only for a L = 32 system. The four sets of curves (from dark to light
color) correspond to UAB/U = 0.0, 0.25, 0.5, 0.75, with U/t = 2 at
half filling. The drag density n(s)

AB is proportional to the slope of the
jB curve in the limit of φA → 0. The inset demonstrates the global
momentum conservation because of the constant value of the total
current for all values of UAB.

definition of the current is properly obtained through the (dis-
crete) continuity equation,

∂〈n̂x,α (t )〉
∂t

= 1

ih̄
〈[n̂x,α, Ĥ ]〉

= 2t̃

h̄
(Im〈b†

x+1,αbx,α〉 − Im〈b†
x,αbx−1,α〉). (3)

Thus, one can calculate the currents using the expression

jα = 2t̃

h̄
Im〈b†

x+1,αbx,α〉 = 1

2π h̄

∂E

∂φα

, (4)

where the last equality has been obtained by applying the
Hellmann-Feynman theorem. By linearizing the currents for
small fluxes and using the relation

vβ = h̄

m∗
2πφβ

L
, (5)

with m∗ = h̄2/2t the “band mass,” we can compute the AB [3]
superfluid density matrix n(s)

αβ of Eq. (1) as

n(s)
αβ = lim

φα,φβ→0

Lm∗

2π h̄

∂ jα
∂φβ

= lim
φα,φβ→0

Lm∗

(2π h̄)2

∂2E

∂φα∂φβ

. (6)

It is important to notice that within tensor network methods,
the total energy and current densities, computed from short-
range correlations, are among the most reliable quantities to
be extracted.

In Fig. 2, we illustrate the effect of the AB drag on the cur-
rents: in the presence of φA only, the current jB is constantly
zero in the absence of interspecies interaction, UAB = 0, while
it increases monotonically as UAB increases. The drag density
n(s)

AB is proportional to the slope of the jB curve in the limit
of φA → 0. The plot highlights the smallness of the drag
effect at a generic point in parameter space—here, the filling

FIG. 3. Superfluid drag in terms of the total density (main panel)
and of the total superfluid density (inset). The red dashed line indi-
cates the theoretical prediction via Bogoliubov approximation [19].
The relevant pairing correlations are responsible for the nonsymmet-
ric trend exhibited by the attractive regime (UAB < 0).

is ν = 0.5 with U/t = 2 and L = 32. For completeness, in
the inset of Fig. 2, we report the total current and we con-
firm that the result jA + jB = 2πνφA/L is independent of the
interaction.

A. Superfluid drag at half filling

In Fig. 3, we report the results for the drag density n(s)
AB =

n(s)
BA as a function of the interspecies interaction UAB/t for

half total filling ν = 0.5 and U/t = 2. In this regime, as
expected from previous analysis [23], the mixture is always
in the 2SF phase until it undergoes either phase separation
or collapse. The location of the phase transitions is strongly
dependent on the parameters of the configuration. In our case,
the collapse occurs beyond the black dashed line in the shaded
region.

For comparison, the Bogoliubov prediction for the en-
trainment is also reported. Using the method developed in
Ref. [19], the Bogoliubov approach leads to the simple ex-
pression for the drag,

n(s)
AB � t

4L

∑
k

(�d,k − �s,k )2k2

(�d,k + �s,k )�s,k�d,k

[
sin(k)

k

]2

, (7)

with �d (s),k = √
ε(k)[ε(k) + 2Uν ± 2UABν] the excitation

energies of the density (spin) channel and ε(k) = 4t sin2(k/2)
the single-particle dispersion relation. The sum in (7) is done
on the wave vectors in the first Brillouin zone, k = 2π/L · n,
with n = 0, . . . , (L − 1). The Bogoliubov approach turns out
to be not very reliable, except for very small interspecies
interaction [27].

More importantly while Eq. (7) predicts a symmetric
behavior for UAB → −UAB, the data display an evident asym-
metry between the two regimes concerning both the location
of the transitions and the slope of the drag increase as a
function of the interaction strength. In particular, the attractive
mixture experiences a much steeper growth of the drag. This
substantial increase can be ascribed to pairing correlations—
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FIG. 4. Normalized drag with respect to the total superfluid den-
sity for different system sizes, as a function of UAB for a system
with U = 10t and ν = 1. From bottom to top (from light to dark
shades), L = 8, 16, 32, 64, 96, with corresponding bond dimensions
χ = 100, 300, 600, 700, 800. Points are data (with error bars ex-
plained in the Supplemental Material [26]); lines are an artistic guide
to the eye. The thermodynamic limit should exhibit a saturation to
(n(s)

AB )/(n(s)
AA + n(s)

AB ) = 0.5 in the PSF region. In the inset, the same
points of the main plot are represented as a function of the inverse
of the system’s size L−1 for different values of −0.30 � UAB/U �
−0.15, from top to bottom.

relevant in 1D for any value UAB < 0—which are not captured
by the Bogoliubov approach.

B. Superfluid drag approaching the PSF phase

In analogy with the QMC results in the 2D case [10,12], we
expect that the asymmetry between the attractive and repulsive
regimes is strongly emphasized in the regime where a single
superfluid of dimers can be reached for UAB < 0 (PSF phase).
Indeed, in the latter case, the flow of one component is ac-
companied by the flow of the other, i.e., n(s)

AB = n(s)
AA. The drag

n(s)
AB becomes a quarter of the total superfluid density, n(s) =

n(s)
AA + n(s)

BB + 2n(s)
AB, and hence saturates to its maximum possi-

ble value and simultaneously ceases to be interpreted as a drag
coefficient. Before the saturation, the magnitude of the drag
rapidly increases, making the approach to the PSF transition a
very suitable region for its measurement. The results for dif-
ferent system sizes are reported in Fig. 4, where U/t = 10 and
ν = 1 are chosen such that the system can undergo the transi-
tion (see, also, [23]). In the inset, we report the behavior of the
normalized drag as a function of L−1 for different values of the
interaction. We estimate that the SF-to-PSF transition should
occur in the thermodynamic limit for UAB/U ∈ [−0.25,−0.2]
(shaded region in the main panel). In such a limit—belonging
to the transition to the Berezinskii-Kosterlitz-Thouless univer-
sality class [23]—the saturation should happen as a sudden
jump of the spin-superfluid density, n(s)

AA − n(s)
AB, from a finite

value to zero. We stress, however, that mesoscopic samples
such as the ones accessible in cold-atomic setups will display
no jump, but rather a sizable value of n(s)

AB, thus making the AB
collisionless drag finally observable.

IV. COLLISIONLESS DRAG AND LUTTINGER LIQUID
PARAMETERS

After having extracted the strength of collisionless drag
and found the regime where its presence is not negligible, we
study its effect in determining the behavior of some correla-
tion functions and its relationship with the Luttinger liquid
(quantum hydrodynamic) low-energy description of the two-
species Bose-Hubbard model.

Indeed, in the 2SF phase, the low-energy theory for our
system corresponds to the Hamiltonian of two coupled Lut-
tinger liquids [28]. The Hamiltonian can be diagonalized
by introducing the density (D) and spin/polarization (S)
channels,

Hμ = 1

2π

∫ [
cμKμ(∂xφμ)2 + cμ

Kμ

(∂xθμ)2

]
dx, (8)

where φD(S) = (φA ± φB)/
√

2 and θD(S) = (θA ± θB)/
√

2 are
the bosonic fields related to the fluctuations of the phase and
the amplitude of the total density (spin) of the two coupled
superfluids [29]. The speeds of sound, cD(S) and KD(S), are
the so-called Luttinger parameters. There is an additional
nonlinear coupling between the densities of the two Luttinger
liquids, which can be perturbatively accounted for by a term
proportional to UAB cos(2

√
2θS ). This term is irrelevant in

the 2SF phase and relevant in the PSF phase. As long as
the Hamiltonian given by Eq. (8) holds, an algebraic decay
characterizes the correlation functions (also known as quasi-
long-range order) [28],

Gα (x) = 〈b†
i+x,αbi,α〉 ∝ |d|− 1

4KD
− 1

4KS ,

RD(x) = 〈b†
i+x,Ab†

i+x,Bbi,Bbi,A〉 ∝ |d|− 1
KD ,

RS (x) = 〈b†
i+x,Abi+x,Bb†

i,Bbi,A〉 ∝ |d|− 1
KS . (9)

Here we expressed the algebraic decay in terms of the natural
measure of the distances between sites on a ring geometry,
i.e., the chord function [30],

d (x/L) = L

π
sin

(πx

L

)
, (10)

where L is the number of sites and x ∈ N is the linear distance
between the sites. For very large rings, the expression further
simplifies according to the substitution d → x. The relations
in (9) can be easily checked by using the leading term in the
long-wavelength field representation bj,α ∝ exp (iφα ) [31].

The single-body correlations Gα have a mixed density/spin
character, consistent with the fact that the imaginary part of
their nearest-neighbor value gives back the species current jα .
The two contributions can instead be isolated with the help of
two-body correlations: RD concerns the superfluid character
of pairs of A − B particles and therefore the density channel,
while RS relates to particle-hole pairs and therefore the spin
channel [12,23].

Away from commensurate effects, possibly leading to a
Mott insulator, the density channel is always superfluid, i.e.,
RD scales algebraically. A change in RS and Gα from alge-
braic to exponential decay—or, equivalently, a drop of KS

to 0—happens instead when entering the PSF phase, due to
the opening of a gap in the spin channel. This is illustrated
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(a) (b) (c)

FIG. 5. The correlation functions of Eq. (9) [(a) Gα , (b) RD, and (c) RS] as a function of the conformal distance for a unitary total
filling system ν = 1, t = 1, and U = 10. The orange points concern a regime in which the system is in a PSF phase, while the blue ones
concern the 2SF phase, and we represent, with a color gradient from dark to light, different system sizes from L = 8 to L = 64. The dashed
lines are exponential and algebraic fits, depending on the expected behavior of the functions for UAB/U = −0.1, and the solid lines are for
UAB/U = −0.5.

in Fig. 5, where the correlations measured for different sys-
tem sizes (L = 8, 16, 32, 64, 96) are reported for two sample
parameter values deep in the 2SF (blue) and PSF (orange)
phases.

The Luttinger parameters satisfy the relation [28]

KS = π h̄χcS/2, (11)

where χ = [∂2e/∂ (νA − νB)2]−1 is the spin susceptibility,
with e the energy density (the same goes for the density chan-
nel with the compressibility rather than the susceptibility).

FIG. 6. (a) Luttinger parameter KS for the spin channel, as ob-
tained from the hydrodynamic relation in Eq. (13) (solid line with
error shadow) and from the correlation functions, given by Eq. (9)
(points with error bars). Points are reported until the algebraic fit
makes sense: the shaded region indicates where deviations become
sizable (for more details, see the Supplemental Material [26]). In
the PSF, the parameter KS must go to zero. (b) The behavior of
the susceptibility as a function of the interaction, as estimated from
various system sizes (color code as in Fig. 4, except for L = 8 which
is omitted).

On the other hand, a hydrodynamic approach based on
the energy functional including the collisionless drag [3,10]
provides the following relation between the spin speed of
sound and the superfluid densities [32]:

c2
S = 2

n(s)
AA − n(s)

AB

m∗χ
. (12)

By direct comparison, the following also holds:

KS =
√

π2h̄2
(
n(s)

AA − n(s)
AB

)
χ

2m∗ . (13)

The drag thus appears in the constitutive relations of the
Luttinger parameters. This fact, often overlooked in the lit-
erature [23,33–37], is crucial in obtaining consistent results
in the perturbative approach of Luttinger liquids. Therefore,
in writing the two-species Luttinger Hamiltonian, a term pro-
portional to n(s)

AB∂xφA∂xφB must be included. The latter term
should indeed be generated under the renormalization group
flow obtained by means of the operator product expansion
as it has been studied for the Josephson tunneling between
superfluids (see, e.g., [38] and reference therein). In Fig. 6, we
report the values of KS obtained by hydrodynamics [Eq. (13)]
and by the long-range behavior of the correlation functions
[Eq. (9)].

The latter, however, ceases to be algebraic and becomes
exponential once the system enters into the PSF phase [23]:
we quantify this change by measuring the deviation from a
pure algebraic behavior in log-log scale (see the Supplemental
Material [26] for a detailed discussion). The region where
the deviation becomes appreciable is in agreement with the
region predicted from the drag saturation (Fig. 4). Before the
fluctuations region, the two estimates for KS give consistent
results.

For the sake of comparison with mesoscopic experiments
accessible with ultracold gases in optical lattices, we also re-
port, in Fig. 6(b), the estimated spin susceptibility for different
system sizes.
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V. CONCLUSIONS

In conclusion, we provide a numerical estimation of the AB
superfluid drag via a tensor network approach for a 1D Bose
mixture on a ring lattice. The drag is enhanced for attractive
interactions due to the relevance of pairing correlations in 1D
systems. In particular, close to the 2SF-PSF transition, the en-
trainment can become of the same order of the full superfluid
density, which makes this regime more suitable for an exper-
imental measure. Differently from the Mott-superfluid case
for a single species [38,39], the thermodynamic estimate of
the PSF transition proves to be challenging from a numerical
point of view due to the slow convergence to the thermody-
namic limit for the spin channel [11]. We stress again that our
results are relevant for an ultracold-gas experiment where tens
to a few hundreds of atoms are considered, where the drag
could be extracted by measuring the susceptibility [40] and
the spin speed of sound [41].

Moreover, our analysis suggests that the inclusion of the
drag has fundamental implications in the understanding of any
hydrodynamic Luttinger liquid approach to the two-species
Bose-Hubbard model. In particular, we show that AB hy-
drodynamics provides a reliable expression for the Luttinger
parameters of the spin channel in terms of the superfluid
densities and the susceptibility of the system.

Note added. Recently, we became aware of a density ma-
trix renormalization group (DMRG)-QMC comparison for the

study of the pairing properties of one-dimensional hard-core
bosons [42]. The results show the slow convergence to the
thermodynamic limit for the spin channel as in our soft-core
case.
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