000904519 001__ 904519
000904519 005__ 20220103172058.0
000904519 0247_ $$2doi$$a10.1103/PhysRevB.104.054415
000904519 0247_ $$2ISSN$$a1098-0121
000904519 0247_ $$2ISSN$$a2469-9977
000904519 0247_ $$2ISSN$$a0163-1829
000904519 0247_ $$2ISSN$$a0556-2805
000904519 0247_ $$2ISSN$$a1095-3795
000904519 0247_ $$2ISSN$$a1538-4489
000904519 0247_ $$2ISSN$$a1550-235X
000904519 0247_ $$2ISSN$$a2469-9950
000904519 0247_ $$2ISSN$$a2469-9969
000904519 0247_ $$2Handle$$a2128/29629
000904519 0247_ $$2altmetric$$aaltmetric:103134355
000904519 0247_ $$2WOS$$aWOS:000684123200001
000904519 037__ $$aFZJ-2021-06089
000904519 082__ $$a530
000904519 1001_ $$0P:(DE-HGF)0$$aSchubert, Dennis$$b0$$eCorresponding author
000904519 245__ $$aQuantum versus classical dynamics in spin models: Chains, ladders, and square lattices
000904519 260__ $$aWoodbury, NY$$bInst.$$c2021
000904519 3367_ $$2DRIVER$$aarticle
000904519 3367_ $$2DataCite$$aOutput Types/Journal article
000904519 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640770139_11761
000904519 3367_ $$2BibTeX$$aARTICLE
000904519 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904519 3367_ $$00$$2EndNote$$aJournal Article
000904519 520__ $$aWe present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin-1/2 systems with up to N=36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S=1/2 is small and far away from the classical limit S→∞.
000904519 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904519 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904519 7001_ $$00000-0003-2184-5275$$aRichter, Jonas$$b1
000904519 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b2
000904519 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
000904519 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b4
000904519 7001_ $$00000-0003-0608-0884$$aSteinigeweg, Robin$$b5
000904519 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.054415$$gVol. 104, no. 5, p. 054415$$n5$$p054415$$tPhysical review / B$$v104$$x1098-0121$$y2021
000904519 8564_ $$uhttps://juser.fz-juelich.de/record/904519/files/PhysRevB.104.054415.pdf$$yOpenAccess
000904519 909CO $$ooai:juser.fz-juelich.de:904519$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b2$$kFZJ
000904519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000904519 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904519 9141_ $$y2021
000904519 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000904519 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000904519 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904519 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000904519 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000904519 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000904519 980__ $$ajournal
000904519 980__ $$aVDB
000904519 980__ $$aUNRESTRICTED
000904519 980__ $$aI:(DE-Juel1)JSC-20090406
000904519 9801_ $$aFullTexts