000904520 001__ 904520
000904520 005__ 20220103172046.0
000904520 0247_ $$2doi$$a10.5194/acp-21-4285-2021
000904520 0247_ $$2ISSN$$a1680-7316
000904520 0247_ $$2ISSN$$a1680-7324
000904520 0247_ $$2Handle$$a2128/29634
000904520 0247_ $$2altmetric$$aaltmetric:102324372
000904520 0247_ $$2WOS$$aWOS:000632219700002
000904520 037__ $$aFZJ-2021-06090
000904520 082__ $$a550
000904520 1001_ $$00000-0003-2094-8010$$aRybka, Harald$$b0$$eCorresponding author
000904520 245__ $$aThe behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON
000904520 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000904520 3367_ $$2DRIVER$$aarticle
000904520 3367_ $$2DataCite$$aOutput Types/Journal article
000904520 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640770415_11761
000904520 3367_ $$2BibTeX$$aARTICLE
000904520 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904520 3367_ $$00$$2EndNote$$aJournal Article
000904520 520__ $$aCurrent state-of-the-art regional numerical weather prediction (NWP) models employ kilometer-scale horizontal grid resolutions, thereby simulating convection within the grey zone. Increasing resolution leads to resolving the 3D motion field and has been shown to improve the representation of clouds and precipitation. Using a hectometer-scale model in forecasting mode on a large domain therefore offers a chance to study processes that require the simulation of the 3D motion field at small horizontal scales, such as deep summertime moist convection, a notorious problem in NWP.We use the ICOsahedral Nonhydrostatic weather and climate model in large-eddy simulation mode (ICON-LEM) to simulate deep moist convection and distinguish between scattered, large-scale dynamically forced, and frontal convection. We use different ground- and satellite-based observational data sets, which supply information on ice water content and path, ice cloud cover, and cloud-top height on a similar scale as the simulations, in order to evaluate and constrain our model simulations.We find that the timing and geometric extent of the convectively generated cloud shield agree well with observations, while the lifetime of the convective anvil was, at least in one case, significantly overestimated. Given the large uncertainties of individual ice water path observations, we use a suite of observations in order to better constrain the simulations. ICON-LEM simulates a cloud ice water path that lies between the different observational data sets, but simulations appear to be biased towards a large frozen water path (all frozen hydrometeors). Modifications of parameters within the microphysical scheme have little effect on the bias in the frozen water path and the longevity of the anvil. In particular, one of our convective days appeared to be very sensitive to the initial and boundary conditions, which had a large impact on the convective triggering but little impact on the high frozen water path and long anvil lifetime bias. Based on this limited set of sensitivity experiments, the evolution of locally forced convection appears to depend more on the uncertainty of the large-scale dynamical state based on data assimilation than of microphysical parameters.
000904520 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904520 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904520 7001_ $$00000-0002-0742-7176$$aBurkhardt, Ulrike$$b1
000904520 7001_ $$00000-0003-3386-1715$$aKöhler, Martin$$b2
000904520 7001_ $$0P:(DE-HGF)0$$aArka, Ioanna$$b3
000904520 7001_ $$00000-0003-4793-0101$$aBugliaro, Luca$$b4
000904520 7001_ $$0P:(DE-HGF)0$$aGörsdorf, Ulrich$$b5
000904520 7001_ $$00000-0002-5860-2368$$aHorváth, Ákos$$b6
000904520 7001_ $$0P:(DE-Juel1)156465$$aMeyer, Catrin I.$$b7
000904520 7001_ $$0P:(DE-HGF)0$$aReichardt, Jens$$b8
000904520 7001_ $$00000-0001-9760-3550$$aSeifert, Axel$$b9
000904520 7001_ $$00000-0001-7876-5845$$aStrandgren, Johan$$b10
000904520 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-4285-2021$$gVol. 21, no. 6, p. 4285 - 4318$$n6$$p4285 - 4318$$tAtmospheric chemistry and physics$$v21$$x1680-7316$$y2021
000904520 8564_ $$uhttps://juser.fz-juelich.de/record/904520/files/acp-21-4285-2021.pdf$$yOpenAccess
000904520 909CO $$ooai:juser.fz-juelich.de:904520$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156465$$aForschungszentrum Jülich$$b7$$kFZJ
000904520 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904520 9141_ $$y2021
000904520 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904520 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904520 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904520 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904520 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904520 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000904520 980__ $$ajournal
000904520 980__ $$aVDB
000904520 980__ $$aUNRESTRICTED
000904520 980__ $$aI:(DE-Juel1)JSC-20090406
000904520 9801_ $$aFullTexts