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Abstract: In previous work, arXiv:1905.01909, we have calculated the m%/fπ ratio in the

chiral and continuum limit for SU(3) gauge theory coupled to Nf = 2, 3, 4, 5, 6 fermions in

the fundamental representation. The main result was that this ratio displays no statistically

significantNf -dependence. In the present work we continue the study of theNf -dependence

by extending the simulations to Nf = 7, 8, 9, 10. Along the way we also study in detail

the Nf -dependence of finite volume effects on low energy observables and a particular

translational symmetry breaking unphysical, lattice artefact phase specific to staggered

fermions.
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1 Introduction and summary

We study the flavor number dependence of the ratio of the vector meson mass and the

pseudoscalar decay constant in SU(3) gauge theory. The ratio is significant for a large

class of beyond Standard Model theories envisioning a strongly interacting Higgs sector

and a composite Higgs boson [1]. The elementary fermion ingredients of the composite

Higgs boson may form other bound states, such as a vector meson, which would be one of

the new, so far undetected, particles the theory predicts. The pseudoscalar decay constant

sets the scale, in many theories it is simply identified with v = 246.22 GeV, the symmetry

breaking scale of the Standard Model. Having non-perturbative results for m%/fπ then

determines the vector meson mass m% in physical units. This beyond Standard Model

scenario, and variants thereof, attracted enormous interest in the lattice community in

the past decade [2–34]. For a recent reviews of the available lattice results see [35] and

references therein.

Apart from the phenomenological motivation the Nf -dependence of our ratio is an

interesting QFT question on its own. Once both fπ and m% are understood to be defined at

finite fermion mass m and the chiral limit is only taken for the ratio, m%/fπ is a meaningful

quantity both inside and outside the conformal window. Outside the conformal window

both the denominator and nominator are finite in the chiral limit with an obviously finite

ratio. Inside the conformal window both m% and fπ behave as O(mα) for small m with

the same exponent α, again leading to a finite ratio in the chiral limit. Hence the ratio

is meaninful and well-defined on the full range 0 ≤ Nf ≤ 16, including the quenched case

Nf = 0 and the last integer flavor number Nf = 16 before asymptotic freedom is lost at

Nf = 33/2. Formally, Nf = 33/2 corresponds to a free theory [36] and as such m% = 2m

and fπ =
√

12m, leading to m%/fπ = 1/
√

3. This is an order of magnitude smaller than

∼ 8 found for 2 ≤ Nf ≤ 6. Hence on the range 7 ≤ Nf ≤ 16 the ratio will drop an order of

magnitude and it is not a priori known whether the drop will be gradual or rapid, nor is it

known if the onset of the conformal window somewhere around 10 ≤ Nf ≤ 13 is connected

to it in any way.
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Figure 1. Two examples at Nf = 7 for finding the boundary of the shift symmetry broken phase.

The square of the observable (2.2) is shown at fixed β (left) and fixed m (right).

Motivated by both the phenomenological implications and the purely QFT aspects we

continue the investigation with 7 ≤ Nf ≤ 10 in the present work. Even though we would

like to know the behavior for 11 ≤ Nf ≤ 16 as well, finite volume effects are growing as

a function of Nf so rapidly that unfortunately we must postpone these flavor numbers to

future work.

The organization of the paper is as follows. In section 2 we first study the Nf -

dependence of an unphysical lattice phase specific to staggered fermions. The reason for

doing so is that as Nf grows the size of the unphysical phase in the (β,m) plane grows

and one must avoid it in order to perform the physically relevant chiral-continuum limit.

Section 3 details our study of the finite volume effects, the upshot of which is that as Nf

is growing so do finite volume effects. In fact the growth is rather rapid and is the main

reason Nf = 10 is the highest flavor number we can reliably simulate at the moment. The

chiral-continuum limit is investigated in section 4 once the bare parameters are chosen such

that unphysical phases are avoided and finite volume effects are suppressed sufficiently. We

end with conclusions and possible outlook to future work in section 5.

2 Discretization and unphysical phases with staggered fermions

The lattice discretization in the present work follows exactly [37]; 4 steps of stout smearing

[38, 39] is applied to naive staggered fermions with smearing parameter % = 0.12. A

combination of the HMC and RHMC algorithms [40, 41] with or without rooting are used

to have the desired continuum flavor number Nf .

Both in [37] and the present work simulations are run at particular points of the (β,m)

phase diagram at given Nf . It is important that the bare parameters are all in the region

of phase space which is continuously connected to the physical β → ∞ region, especially

because unphysical phases do exist with staggered fermions.

The possibility that in the (β,m) bare parameter space an unphysical Aoki-like phase

might exist with staggered fermions was first pointed out in [42, 43]. Using staggered
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Figure 2. The shift symmetry breaking phase boundaries in the (β,m) plane. The broken phase

is located under the curves, i.e. for small quark masses. The curves are given with different colors

for different number of flavors.

chiral perturbation theory it was shown that decreasing the mass on coarse lattices can

lead to condensation of taste split meson states which in turn means that the vacuum

becomes unstable. The new vacuum has different symmetries from the one expected in the

continuum and in particular the so-called staggered shift symmetry, which is a translation

by a single site accompanied by a phase factor for fermion fields, is broken. Briefly, taste

split meson masses M2 in staggered chiral perturbation theory receive a continuum-like

contribution from the fermion mass, O(m), but also a contribution from taste splitting

operators, O(a2). If the latter is negative and large in absolute value compared to the

former, M2 may turn negative, leading to the aforementioned instability. Convincing

numerical evidence for this scenario was provided in [44] for Nf = 8, 12 and the relationship

between the staggered perturbation theory picture and the actual numerical results were

further clarified in [45].

In this section we study the unphysical, shift symmetry broken phase with our partic-

ular discretization and the full range of flavor numbers 2 ≤ Nf ≤ 10 contained in both [37]

and the present work. The main conclusion will be that even though unphysical phases do

exist for Nf > 2 and we do map them out, our simulation points are all in the physical

phase, justifying our chiral-continuum extrapolations.

The single site shift symmetry in question is [46]

χ(x)→ ξµ(x)χ(x+ µ̂) , χ̄(x)→ χ̄(x+ µ̂)ξµ(x) , Uµ(x)→ Uµ(x+ µ̂) , (2.1)

where χ(x) is the staggered field at integer site x, µ̂ is the unit vector on the lattice in

direction µ and ξµ(x) = (−1)
∑
ν>µ xν . In this convention the staggered signs in the Dirac

operator are ηµ(x) = (−1)
∑
ν<µ xν . The staggered action is clearly invariant under this set

of transformations.
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As discussed in [44] a suitable order parameter for the study of the potential sponta-

neous breaking of (2.1) is the difference of plaquettes on neighboring sites. More precisely,

in terms of the plaquette P (x),

∆µP =
∑

xµ even

〈P (x+ µ̂)− P (x)〉 , (2.2)

where the sum over the lattice involves only even xµ coordinates. Clearly, if the sum

would be over the entire lattice ∆µP would always be zero. In this way ∆µP measures if

translational invariance in direction µ holds for the plaquette or not. In the physical phase,

where translational invariance for gluonic observables is present, ∆µP = 0 for all µ. The

unphysical phase will be signaled by ∆µP 6= 0 for at least one direction µ.

It is a straightforward exercise to map the observable ∆µP as a function of (β,m) for

the various flavor numbers. A useful quantity to monitor is the square ∆µP∆µP involving

a sum over µ. Two typical results are shown for ∆µP∆µP at fixed β as a function of m

and at fixed m as a function of β in figure 1 with Nf = 7 on 184 lattices. It is not our

goal to obtain very precise values for (βc,mc) corresponding to the spontaneous breaking

of translational invariance, for our purposes an estimate will suffice which can be read off

from results of the type shown in figure 1. A detailed finite size scaling study would be

required for anything more precise. As we will see our simulation points are so far away

from the (βc,mc) phase boundaries that a rough estimate is indeed sufficient.

Performing the scans on 124 and 184 lattices shows that volume dependence is negligible

on our level of precision. The summary of our results for the phase boundaries are shown in

figure 2 for all flavor numbers where the thickness of the boundaries include the uncertainty

related to our crude reading off of (βc,mc) on fixed 184 lattice volumes.

For each Nf > 2 a triangle shaped region corresponds to the spontaneously broken shift

symmetry phase at finite (β,m). This triangle presumably extends down to m = 0 at two

particular β values. The bare mass, above which translational symmetry is unbroken for

all β is a growing function of Nf as can be seen in figure 2. Not surprisingly, the particular

β above which translational symmetry is unbroken for all masses is a decreasing function

of Nf . At Nf = 3 we could not resolve the triangle shape because the broken phase only

occures for very small masses, but nevertheless could find a transition. Interestingly, we

could not detect any translational symmetry broken phase for Nf = 2, perhaps because no

such phase exists or perhaps because it occurs at extremely small masses.

The (β,m) values for Nf = 2, 3, 4, 5, 6 which were used in the chiral-continuum ex-

trapolations in [37] were listed in tables 3 and 4 of said work while the same parameters

are listed in table 3 for the present work with Nf = 7, 8, 9, 10. Clearly, all parameters used

for the chiral-continuum extrapolations are in the physical phase and far from the (βc,mc)

phase boundaries.

3 Finite volume effects

Just as in [37], a prerequisite step before chiral-continuum extrapolations are performed is

the study of finite volume effects. The volume, measured in mπ units, needs to be large
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Nf β m L/a amπ afπ

7 3.00 0.0100 20 0.210(3) 0.0385(6)

24 0.197(1) 0.0427(4)

28 0.1913(5) 0.0434(3)

32 0.1914(5) 0.0443(2)

∞ 0.1900(7) 2.52 0.0444(2) 1.24

8 2.68 0.0103 20 0.239(3) 0.0339(5)

24 0.209(1) 0.0396(4)

28 0.1999(9) 0.0415(3)

32 0.1983(5) 0.0417(1)

∞ 0.1964(8) 0.87 0.0421(2) 0.36

9 2.49 0.0100 28 0.196(1) 0.0294(2)

32 0.181(1) 0.0320(2)

36 0.1771(9) 0.0329(2)

40 0.1756(5) 0.0324(2)

∞ 0.1740(6) 0.59 0.0330(1) 6.04

10 2.30 0.0112 28 0.228(1) 0.0238(2)

32 0.194(2) 0.0257(3)

36 0.180(1) 0.0273(2)

40 0.174(1) 0.0277(1)

48 0.1704(5) 0.02813(8)

∞ 0.1699(6) 0.45 0.02807(9) 2.88

Table 1. Volume dependence of mπ and fπ and fixed lattice spacing and fermion mass, together

with the infinite volume extrapolated results using (3.1) and (3.2). The χ2/dof of the extrapolations

are also shown.

enough in order to suppress finite volume distortions of the ratio m%/fπ especially because

as the volume is increasing m% and fπ are moving in the opposite direction. The finite

volume effects are thus enhancing each other in the ratio and too small volumes will lead

to an overestimation of m%/fπ.

An upper bound on the size of finite volume effects sets a lower bound on mπL for

each Nf . The results in [37] have shown that this lower bound is heavily Nf -dependent in

the range 2 ≤ Nf ≤ 6. In the present work these finite volume investigations are extended

to 7 ≤ Nf ≤ 10.

The main low energy quantities mπ and fπ are measured at fixed lattice spacing and

mass m for various lattice volumes, since these observables are expected to be the most

sensitive to the finite volume. The mπL dependence of these quantities are given by

mπ(L) = mπ∞ + Cm g(mπ∞L)

fπ(L) = fπ∞ − Cf g(mπ∞L) , (3.1)

with some mπ∞, fπ∞, Cm and Cf parameters. The details follow the procedure explained

in [37], in particular we have

g(x) =
4

x

∑
n6=0

K1(nx)

n
(3.2)
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in terms of the Bessel function K1. The sum is over integers (n1, n2, n3, n4) with n2 =

n21 + n22 + n23 + 4n24 6= 0 where µ = 4 corresponds to the time direction. The function

g(x) describing the finite volume effects represents the lightest particle, the pion, going

around the finite volume in all 3 space and the time direction any number of times.

The leading contribution for our geometry, where the lattice is largest in the time di-

rection comes from the pion going around each spatial direction once, corresponding to

n = (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0). If only these terms are kept we are led to the

familiar finite volume effects given by a single exponential,

g(x) = 24

√
π

2

e−x

x3/2

(
1 +O

(
1

x

))
+O

(
e−
√
2x
)
. (3.3)

We have repeated the finite volume fits with the above leading order single exponential

expression as well and the results did not change within statistical uncertainties hence the

data can not distinguish between the two sets of extrapolations. Note that the finite volume

extrapolations (3.1) with either (3.2) or (3.3) do not depend on chiral perturbation theory

at all, they hold for any massive QFT with mπ taking the place of the lightest mass. In

particular even if Nf is inside the conformal window but a finite mass is introduced leading

to finite masses for physical excitations, finite volume effects are still described by (3.1)

and (3.2) or approximately (3.3).

The results of our fits of the type (3.1) with (3.2) are shown in figure 3.

The main conclusion from the finite volume volume study is that as Nf is increasing

the minimal mπL required for at most 1% finite volume effects needs to grow. On the full

range 2 ≤ Nf ≤ 10 including the results from [37] the bounds can be interpolated by the

simple expression,

mπL > 3.46 + 0.12Nf + 0.03N2
f . (3.4)

For instance at Nf = 10 we have mπL > 7.66, about twice as large as the corresponding

bound at Nf = 2.

Apart from the exponential finite volume effects discussed above for fπ and mπ, there

might be further finite volume effects influencing m% because of its possible decay to 2

pions. For our simulation points % is however stable.

The conclusion from this section is that our simulation results suffer from at most 1%

finite volume effects for Nf = 7, 8, 9 and at most 1.5% for Nf = 10, resulting in at most

3% distortion in the ratio m%/fπ, well below our statistical uncertainties.

4 Chiral-continuum extrapolation

Apart from the observables mπ, fπ and m% the gradient flow scale t0 was also measured to

set the scale in the chiral-continuum extrapolations. The right hand side in the definition

of t0 [47],

〈t20E(t0)〉 = c (4.1)
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Figure 3. Finite volume effects for mπ and fπ for all flavors 7 ≤ Nf ≤ 10. Extrapolations are via

(3.2) and the data is tabulated in table 1.

is in principle arbitrary, in QCD usually c = 0.3 is used. It is possible to choose different

c = c(Nf ) for different Nf though. A combination of cut-off effects, statistical uncertainty

and computational resources led to our following choices c(7) = 0.45, c(8) = 0.45, c(9) =

0.40, c(10) = 0.32.

Once t0 is measured along with our low energy quantities of interest the chiral-

continuum extrapolation is performed via

X
√
t0 = C0 + C1m

2
πt0 + C2

a2

t0
+ C3

a2

t0
m2
πt0 , (4.2)

where X = fπ or m%. The continuum mass dependence is given by C0 + C1m
2
πt0 and the

two terms C2 and C3 parametrize cut-off effects in both the chiral limit value C0 and the

slope C1.

The measured data for mπ, fπ,m%, t0 are shown in figure 3. The lattice geometry was

always L3 × 2L, the collected number of thermalized configurations O(1000) and every

10th was used for measurements. For each flavor number, simulations are performed at 3

lattice spacings with 4 masses at each. Hence the chiral-continuum extrapolations (4.2)

correspond to dof = 8 in each case.
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Figure 4. Chiral-continuum extrapolation of fπ and m% in t0 units using the 4-parameter global

fit (4.2). The χ2/dof of the extrapolation is also shown. The solid black line corresponds to the

resulting continuum mass dependence C0 +C1m
2
πt0, i.e. dropping C2 and C3 which are responsible

for the cut-off effects. The deviations from the data at given bare coupling β shown by different

colors, and the straight line are indicative of said cut-off effects. The absolute scale on the axis

can not be directly compared between different flavor numbers because the definition of t0 was

Nf -dependent, see (4.1).
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Nf fπ
√
t0 m%

√
t0 m%/fπ

7 0.079(2) 0.51(5) 6.5(7)

8 0.085(5) 0.68(8) 8.0(1.1)

9 0.086(5) 0.58(5) 6.7(7)

10 0.071(6) 0.58(6) 8.2(1.1)

Table 2. Continuum results for each Nf in the chiral limit.
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Figure 5. TheNf -dependence ofm%/fπ in the chiral-continuum limit. The results with 2 ≤ Nf ≤ 6

are from [37] and 7 ≤ Nf ≤ 10 corresponds to this work. The result of a constant fit as a function

of Nf is also shown.

The chiral-continuum extrapolations are shown in figure 4 and the results are tabulated

in table 2. The full Nf -dependence of m%/fπ in the chiral-continuum limit for 2 ≤ Nf ≤ 10

using also the results from [37] is shown in figure 5.

It was observed in [37] that there is no statistically significant Nf -dependence in the

ratio for 2 ≤ Nf ≤ 6, at least on the level of precision available there. A statistically good

constant fit gave m%/fπ = 7.95(15). We can now repeat the constant fit on the new range

7 ≤ Nf ≤ 10 and the result is m%/fπ = 7.01(40) with χ2/dof = 0.97, which represents a

slight 2σ-decrease. Nevertheless combining all results on the full range 2 ≤ Nf ≤ 10 we

obtain m%/fπ = 7.85(14) with χ2/dof = 1.10 which is our final result. 1 Apparently, the

free value m%/fπ = 1/
√

3 at Nf = 33/2 is still about an order of magnitude away.

5 Conclusion

In this work we continued our study of the ratio m%/fπ in the chiral-continuum limit.

Constant fits as a function of Nf on the two ranges 2 ≤ Nf ≤ 6 and 7 ≤ Nf ≤ 10 show

1As a consistency check we have also fitted the Nf -dependence as m%/fπ = A+NfB which resulted in

A = 8.17(29), B = −0.083(66) with χ2/dof = 1.04. The fit parameter B is consistent with zero on the

1.3σ level.
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a decrease on the 2σ-level but a constant fit on the full range 2 ≤ Nf ≤ 10 is still a

statistically acceptable result and leads to m%/fπ = 7.85(14).

The main conclusion is the reinforcement of the picture arising from [37], namely that

m%/fπ is a robust quantity once the gauge group is fixed and does not depend much, if at all,

on the fermion content. Applied to composite Higgs models inspired by strong dynamics,

this would mean that a potential measurement of a new so far unobserved vector resonance

inherent in these types of models, would not select the flavor number. The measured vector

mass would rather place constraints on the gauge group [48].

Our ratio has a well-defined meaning in the chiral limit both inside and outside the

conformal window. If the free value m%/fπ = 1/
√

3 = 0.577 is to be reached at Nf =

16.5, an order of magnitude drop ought to take place beyond Nf = 10. If the trends

of finite volume effects follow (3.4) in any sense, the Nf > 10 simulations will be very

challenging. It would be most interesting to work out the perturbative corrections to 1/
√

3

close to the upper end of the conformal window, i.e. not much below Nf = 16.5 where

perturbation theory is reliable. Hopefully the full range 2 ≤ Nf ≤ 16 can then be covered

by a combination of non-perturbative simulations and perturbative results. The onset of

the conformal window would probably leave some sort of imprint on the flavor dependence

of the ratio, a subject we leave for future work.
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Nf β m L/a amπ afπ am% t0/a
2 mπL fπL

7 2.88 0.0149 24 0.2583(5) 0.0612(2) 0.478(3) 2.45(2) 6.20(1) 1.469(5)

0.0122 28 0.2327(4) 0.0565(1) 0.449(2) 2.70(2) 6.52(1) 1.583(4)

0.0100 28 0.2092(4) 0.0519(1) 0.410(4) 2.99(2) 5.86(1) 1.452(4)

0.0086 32 0.1932(4) 0.04904(9) 0.389(4) 3.17(2) 6.18(1) 1.569(3)

3.00 0.0147 28 0.2353(8) 0.0520(2) 0.406(3) 3.92(2) 6.59(2) 1.455(4)

0.0125 28 0.2164(4) 0.0480(2) 0.386(4) 4.28(4) 6.06(1) 1.345(4)

0.0100 32 0.1914(5) 0.0443(2) 0.333(6) 4.77(3) 6.12(2) 1.418(7)

0.0084 36 0.1738(5) 0.0412(1) 0.320(6) 5.12(3) 6.26(2) 1.484(5)

3.20 0.0115 36 0.1741(6) 0.0359(2) 0.284(6) 8.74(6) 6.27(2) 1.292(6)

0.0100 36 0.1630(8) 0.0333(2) 0.269(4) 9.65(6) 5.87(3) 1.198(7)

0.0085 40 0.1479(3) 0.0319(2) 0.260(4) 10.07(9) 5.92(1) 1.277(7)

0.0077 40 0.1403(5) 0.0305(2) 0.241(3) 10.3(1) 5.61(2) 1.219(7)

8 2.58 0.0149 24 0.2619(5) 0.0567(2) 0.448(4) 3.67(3) 6.28(1) 1.361(5)

0.0124 28 0.2355(5) 0.0515(2) 0.402(2) 4.30(5) 6.59(1) 1.442(4)

0.0099 28 0.2096(8) 0.0463(1) 0.366(3) 5.01(5) 5.87(2) 1.296(4)

0.0087 32 0.1945(5) 0.0432(1) 0.337(3) 5.55(3) 6.23(2) 1.383(4)

2.68 0.0145 28 0.2400(7) 0.0492(2) 0.380(8) 5.35(5) 6.72(2) 1.378(5)

0.0124 28 0.2207(6) 0.0460(2) 0.361(2) 5.86(6) 6.18(2) 1.288(4)

0.0103 32 0.1983(5) 0.0417(1) 0.332(4) 6.76(5) 6.34(2) 1.336(4)

0.0083 36 0.1750(5) 0.0375(1) 0.296(3) 7.97(7) 6.30(2) 1.350(4)

2.82 0.0120 36 0.1959(6) 0.0387(2) 0.300(3) 9.13(8) 7.05(2) 1.394(6)

0.0100 36 0.1770(5) 0.0352(1) 0.281(3) 10.4(1) 6.37(2) 1.269(5)

0.0080 36 0.1583(6) 0.0314(3) 0.253(4) 11.9(2) 5.70(2) 1.132(9)

0.0075 40 0.1515(5) 0.0302(1) 0.243(2) 13.0(1) 6.06(2) 1.207(5)

9 2.28 0.0164 28 0.2672(5) 0.0526(2) 0.406(2) 4.66(4) 7.48(1) 1.472(4)

0.0128 32 0.2311(5) 0.0452(1) 0.355(3) 6.12(6) 7.39(2) 1.447(4)

0.0100 36 0.1994(3) 0.0393(1) 0.302(3) 7.86(9) 7.18(1) 1.416(4)

0.0090 40 0.1875(2) 0.03703(9) 0.285(3) 8.81(7) 7.500(9) 1.481(4)

2.47 0.0140 32 0.2198(5) 0.0400(1) 0.315(2) 8.98(8) 7.03(2) 1.281(4)

0.0110 36 0.1906(5) 0.0345(2) 0.275(2) 11.5(2) 6.86(2) 1.243(6)

0.0090 40 0.1684(6) 0.0309(2) 0.244(2) 13.8(2) 6.74(2) 1.234(7)

0.0070 48 0.1442(3) 0.0270(1) 0.210(2) 17.6(2) 6.92(2) 1.296(5)

2.66 0.0200 28 0.248(1) 0.0423(2) 0.340(1) 9.4(1) 6.95(3) 1.185(7)

0.0150 32 0.2078(7) 0.0351(2) 0.287(2) 12.8(2) 6.65(2) 1.124(7)

0.0120 40 0.1785(8) 0.0313(2) 0.249(2) 15.6(3) 7.14(3) 1.250(7)

0.0098 48 0.1568(5) 0.0277(2) 0.222(2) 19.3(2) 7.53(2) 1.331(7)

10 2.10 0.0165 32 0.2423(7) 0.0416(2) 0.326(2) 7.00(7) 7.75(2) 1.330(5)

0.0126 36 0.2037(7) 0.0342(1) 0.275(1) 10.2(1) 7.33(2) 1.230(5)

0.0100 40 0.1801(9) 0.0297(2) 0.241(2) 13.4(3) 7.20(3) 1.186(6)

0.0081 48 0.1535(6) 0.02567(9) 0.202(2) 17.4(2) 7.37(3) 1.232(4)

2.30 0.0185 32 0.2386(7) 0.0390(1) 0.310(1) 9.0(1) 7.63(2) 1.247(5)

0.0142 36 0.2005(9) 0.0320(1) 0.259(2) 13.4(2) 7.22(3) 1.152(5)

0.0112 40 0.174(1) 0.0277(1) 0.227(1) 17.4(3) 6.95(4) 1.106(4)

0.0091 48 0.1502(9) 0.0243(2) 0.194(2) 21.3(4) 7.21(4) 1.166(7)

2.50 0.0233 28 0.2584(9) 0.0393(3) 0.328(2) 10.0(2) 7.23(3) 1.100(8)

0.0178 36 0.2106(5) 0.0332(2) 0.267(2) 13.5(3) 7.58(2) 1.194(8)

0.0141 40 0.1800(7) 0.0282(1) 0.227(2) 18.2(3) 7.20(3) 1.128(6)

0.0114 48 0.1571(6) 0.0249(1) 0.202(1) 22.4(2) 7.54(3) 1.195(7)

Table 3. Data used for the chiral-continuum extrapolations. The temporal extent of the lattices

were always twice L/a.
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