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We study the scaling properties of the finite temperature QCD phase transition, for light quark masses 
ranging from the heavy quark regime to their physical values. The lattice results are obtained in the fixed 
scale approach from simulations of N f = 2 + 1 + 1 flavours of Wilson fermions at maximal twist. We 
identify an order parameter free from the linear contributions in mass due to additive renormalization 
and regular terms in the Equation of State, which proves useful for the assessment of the hypothesized 
universal behaviour. We find compatibility with the 3D O (4) universality class for the physical pion 
mass and temperatures 120 MeV � T � 300 MeV. We discuss violation of scaling at larger masses 
and a possible cross-over to mean field behaviour. The chiral extrapolation T0 = 134+6

−4 MeV of the 
pseudocritical temperature is robust against predictions of different universality classes and consistent 
with its estimate from the O (4) Equation of State for the physical pion mass.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The appearance of pseudo-Goldstone bosons in the spectrum 
signals the spontaneous breaking of chiral symmetry of strong in-
teractions. It is well known that chiral symmetry is restored at 
high temperatures, and imprinting of this phenomenon for phys-
ical masses is visible in the behaviour of the order parameters and 
in the spectrum. If the symmetry restoring transition is continu-
ous, the link between the genuine critical behaviour in the chiral 
limit and the observations at finite masses is made transparent by 
the universal Equation of State (EoS). This is true only within a 
limited region around criticality – the scaling window.

Despite substantial progress [1,2], the nature of the continuum 
limit and the extent of its scaling window are still open issues. 
Chiral and axial symmetries play a pivotal role here: in this study 
we make use, as in our previous work, of Wilson fermions at max-
imal twist [3–7], a lattice formulation with good chiral properties 
and an alternative to the more used staggered fermions.

The global symmetry of the QCD Lagrangian U (n)L × U (n)R ∼=
SU (n) × SU (n) ×U (1)V ×U (1)A , valid at classical level, is broken by 
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topological quantum fluctuations. In the limit of an infinite strange 
mass there are at least two possible scenarios for the high tem-
perature transition depending on the fate of the axial symmetry 
[8–10]: if the axial symmetry breaking is not much sensitive to 
the chiral restoration, the breaking pattern is SU (2)L × SU (2)R →
SU (2)V . Due to the associate diverging correlation length, the 
theory is effectively 3D, in the universality class of the classical 
four-component Heisenberg antiferromagnet: O (4) → O (3) [8]. If 
instead axial symmetry is correlated with chiral symmetry, the rel-
evant breaking pattern would be U (2)L ×U (2)R → U (2)V , hinting 
either at a first or at a second order transition with different ex-
ponents [10].

We are interested in properties of the transition for physical 
values of the strange quark mass ms . If the two flavor transition 
is of first order, we are likely dealing with a first order transi-
tion for any ms . Alternatively, if the ms = 0 first order transition 
ends at ms = ms

crit, ms merely renormalizes the coefficients of the 
effective action for ms > ms

crit [8,9], without altering the critical 
behaviour. In this case one conventionally assumes that there is a 
line of second order transition Tc(ml = 0, ms) > Tc(ml = 0, ms) for 
ml = 0, ∞ > ms > ms

crit. Away from the true critical point dimen-
sional reduction may fail, resulting in a 4D theory and a mean field 
behaviour. The extent of the scaling window and the threshold of 
dimension reduction are non-universal features, which should be 
investigated by ab-initio methods.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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These important issues are addressed by model studies [11–
14], phenomenological analysis [15–17], Functional Renormaliza-
tion Group [18–21], and mostly on the lattice [3,4,22–29]. Con-
sistency with O (4) scaling has been reported in lattice studies of 
the theory with two light and strange flavors, at low pion mass 
[1,30], once different sources of scaling violations are taken into 
account. The same study finds a critical temperature in the chiral 
limit T0 = 132+3

−6 MeV. Consistency with O (4) scaling was found 
also by earlier studies with Wilson fermions, see e.g. [7,31,32]. 
Concerning axial symmetry, the current understanding is that it 
seems to be effectively restored above Tc [22,27,33–45], but there 
is no consensus on the restoration temperature. On the analytic 
side, a 4D analysis [46] reported scaling only for very light pion 
masses, mπ < 1 MeV, and an apparent scaling for larger masses. 
The same study underscores the lack of dimensional reduction as a 
potential source of scaling violations. A recent work [21] confirms 
these findings, suggesting that pion masses as light as 30 MeV are 
needed to reach the scaling window in QCD, with a consistent 
extrapolation to T0 � 142 MeV in the chiral limit from different 
prescriptions. A recent review contains a short introduction to the 
scaling window in QCD, and summarizes these and other studies 
[47].

In this study we define an ad-hoc order parameter, which we 
dub 〈ψ̄ψ〉3, free from contributions linear in mass [48]. We explore 
a range of masses and temperatures, in an attempt to identify the 
limits of the scaling window, and its possible cross-over to a mean 
field behaviour. A very preliminary account of some of the results 
has been presented in Ref. [3].

2. Observables, magnetic Equation of State, and scaling

A quantitative way to describe a critical system with a breaking 
field h relies on the EoS for the order parameter M

M = h1/δ f (t/h1/βδ). (1)

In the Eq. (1) we identify M ≡ 〈ψ̄ψ〉, h ≡ ml , t ≡ (T − T0), where 
ml is the light quark mass and T0 ≡ Tc(ml → 0) is the critical tem-
perature in the chiral limit, δ and β are critical exponents. Note 
that there are two independent normalizations for M and for t , 
which, like T0, depend on the strange quark mass. In our range of 
masses it is legitimate to trade ml � m2

π , with a suitable adjust-
ment of normalizations. f (x), with x = t/h1/βδ , is a universal curve 
for a given breaking pattern.

For the 3D O (4) scaling function we rely on the parameter-
ization from Ref. [49] as well as on its polynomial interpolation 
[50,51], which is smooth in the critical region. A successful scaling 
of results for a finite mass would identify the critical tempera-
ture in the chiral limit, besides confirming universality. One less 
stringent approach to scaling relies on pseudo-critical tempera-
tures associated with features of the order parameter. Consider 
the two susceptibilities: χL = ∂〈ψ̄ψ〉

∂ml
and χ� = ∂〈ψ̄ψ〉

∂T , which peak 
at t/h1/βδ = 1.35(3) and t/h1/βδ = 0.74(4), respectively, for 3D 
O (4) universality class with the critical exponents δ = 4.8(1) and 
β = 038(1). The peak positions define pseudo-critical temperatures

Tc(mπ ) = T0 + Azpm2/βδ
π . (2)

A is a mass independent parameter, and Tc for different observ-
ables should scale with the same exponent 2/βδ, but with differ-
ent zp

′s.

2.1. A new order parameter

In the same spirit as Ref. [52], we consider the transverse 
χT = 〈ψ̄ψ〉 and longitudinal χL = ∂〈ψ̄ψ〉 susceptibilities and their 
ml ∂ml

2

Fig. 1. The Equation of State for the chiral condensate 〈ψ̄ψ〉 and for the new order 
parameter 〈ψ̄ψ〉3 in the critical region for the 3D O (4) universality class, and for 
the mean field. For a more direct comparison we also plot the results, normalized
so that they coincide at x = 0, as purple lines.

difference O LT ≡ χT − χL . O LT is an order parameter for the tran-
sition, since χL = χT in the chiral limit in the symmetric phase. 
Moreover, by construction, any linear contribution in ml – either 
coming from the regular part of the EoS or from additive renor-
malization – drops from the difference. However O LT is divergent 
in the chiral limit in the broken phase. The singularity is avoided 
by defining:

〈ψ̄ψ〉3 ≡ 〈ψ̄ψ〉 − ml χL ≡ 〈ψ̄ψ〉 − ml
∂〈ψ̄ψ〉
∂ml

. (3)

This is the order parameter, whose Taylor expansion in ml – when 
defined – starts at a third order, as noted in Ref. [48].

Deriving the Equation of State for 〈ψ̄ψ〉3 is straightforward:

〈ψ̄ψ〉3

m1/δ

l

= f (x)(1 − 1/δ) + x

βδ
f (x)′. (4)

The high temperature leading term is 〈ψ̄ψ〉3 ∝ t−γ −2βδ rather than 
〈ψ̄ψ〉 ∝ t−γ : the decay is rather fast. The inflection point that 
drives the behaviour of the pseudo-critical temperature associated 
with 〈ψ̄ψ〉3 is xinfl = 0.55(1). Note that the pseudo-critical tem-
perature for this observable follows the same scaling in Eq. (2), 
but with a smaller zp : this means that the pseudo-critical tem-
perature associated with the inflection point of 〈ψ̄ψ〉3 is smaller 
than the pseudo-critical temperatures associated with chiral con-
densate and susceptibility. This also implies that it is closer to the 
true critical one in the limit ml → 0.

In Fig. 1 we compare the EoS for 〈ψ̄ψ〉3 with the one for 〈ψ̄ψ〉
for the O (4) Universality class and for the mean field. We note the 
sharper decrease of 〈ψ̄ψ〉3, very understandable given that it is 
closer to the chiral condensate in the chiral limit, followed by the 
high temperature behaviour just described. For either observable 
we also show the mean field result: it is indeed very close to the 
3D O (4), so the transition from the scaling window to a regime 
with small fluctuations is expected to be very smooth.

3. Numerical results

In this work we present new results for the physical pion mass, 
together with an extended analysis of the results for higher pion 
masses [5]. Simulations are performed in the fixed scale approach, 
where we keep the bare lattice parameters fixed and vary the 
temperature by varying the number of lattice points in the tem-
poral direction Nt . Gauge fields ensembles used in this paper are 
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Table 1
Parameters of the N f = 2 + 1 + 1 gauge fields ensembles used for the analysis. 
Lattice spacing and pion mass for D and B ensembles are taken from [53], renor-
malization factor Z p for these ensembles was measured in [54]. All parameters of 
the M ensemble are from [55]. The strange and charm quark masses are close to 
their physical values.

TMFT ETMC mπ [MeV] a [fm] Z P

M140 cB211.072.64 139.3(7) 0.0801(4) 0.462(4)
D210 D15.48 225(5) 0.0619(18) 0.516(2)
D370 D45.32 383(11) 0.0619(18) 0.516(2)
B370 B55.32 376(14) 0.0815(30) 0.509(4)

Table 2
Statistics of the physical pion mass ensembles M140. Each fourth molecular dynam-
ics trajectory was saved.

Nt T [MeV] # conf Nt T [MeV] # conf

20 123(1) 782 10 246(1) 592
18 137(1) 892 8 308(2) 498
16 154(1) 534 6 411(2) 195
14 176(1) 359 4 616(3) 472
12 205(1) 337

Fig. 2. Chiral condensate (5) as a function of temperature T . Solid lines indicate the 
fit in the range [120 : 210] MeV, dashed lines correspond to the range [120 : 250]
MeV.

summarized in Table 1. New simulations for the physical pion 
mass use Wilson-clover twisted mass fermions, with the parame-
ters of the action corresponding to the zero temperature ensemble 
cB211.072.064 of ETMC [56]. The number of configurations gener-
ated for these ensembles is given in Table 2. First results of our 
simulations with physical pion mass were presented in [3].

The chiral condensate is an (approximate) order parameter for 
the chiral symmetry in the light quark sector:

〈ψ̄ψ〉 = 〈ūu〉 + 〈d̄d〉 = T

V

∂ Z

∂ml
= 1

Nt N3
s
〈tr M−1〉. (5)

In numerical simulations the trace of M−1 was measured using 
noisy stochastic estimator with 24 random volume sources. It is 
important to note that the bare chiral condensate (5) should be 
renormalized. However, in the fixed scale approach, applied in this 
paper, both additive and multiplicative renormalization factors are 
equal for all points. Thus, the renormalization procedure has no 
effect on the pseudo-critical temperatures extracted from the peak 
of χ� , or, equivalently, from the inflection point of the chiral con-
densate.

In Fig. 2 we present the dependence of the chiral conden-
sate (5) on the temperature for the physical pion mass. We extract 
the pseudo-critical temperature T� from the inflection point of 
3

Table 3
Pseudo-critical temperature extracted from the chiral observables.

Ensemble T� T�3 Tχ

M140 157.8(7)(10) 146.2(21)(1) 152.7(13)(23)
D210 172(3)(1) 163.3(18)(8) 171(6)(1)
D370 187(5)(1) 178(4)(0) 192(3)(1)
B370 197(2)(0) 181(1)(4) 197(2)(3)

this dependence. For this purpose we fitted the chiral condensate 
with several functions, varying fitting interval:

• Logistic: A + B tanh T −T�

δT�
,

• A + B T −T�√
δT 2+(T −T�)2

,

• Polynomial: � = a� + b�T + c�T 2 + d�T 3.

We find that the quality of the fit worsens when the upper limit 
approaches 300 MeV. The final estimation is obtained by averag-
ing over three functional forms and two fitting intervals [120:210] 
and [120:250] MeV (apart from the polynomial fit, which describes 
the data poorly at large interval [120:250] MeV). The difference 
between various functions/intervals was used to estimate the sys-
tematic uncertainty. The final results for the pseudo-critical tem-
perature T� are quoted in Table 3. The results for heavier pion 
masses are from our previous analysis [5].

The chiral susceptibility, which is defined as the mass deriva-
tive of the chiral condensate χL = ∂

∂ml
〈ψ̄ψ〉, consists of connected 

χconn and disconnected χdisc contributions:

χL = ∂

∂ml
〈ψ̄ψ〉 = χdisc + χconn,

χdisc = T

V

(
〈(tr M−1)2〉 − 〈tr M−1〉2

)
,

χconn = − T

V
〈tr M−2〉.

(6)

Also, the chiral susceptibility suffers from additive and multiplica-
tive renormalizations, which, again, are not affecting the estimate 
of the pseudo-critical point.

In Fig. 3 we show the chiral susceptibility for all ensembles. 
We note that this observable has a strong regular contribution, in 
addition to an additive renormalization. These features are qualita-
tively clear in the plots: rather than the simple symmetric shape 
predicted by the EoS, the curves are skewed and have a long high 
temperature tail. For this reason, and given a small number of 
points in the transition region, we decided to use a model in-
dependent estimate of the pseudo-critical temperature, based on 
cubic spline interpolation, instead of using an explicit functional 
form. To estimate the statistical uncertainty we added random 
Gaussian noise to each point, with the amplitude given by the sta-
tistical uncertainty of our data points. Typically we used O (2000)

splines for error estimate, and we find this a rather robust pro-
cedure. The dispersion of the different results can be appreciated 
from the plots, and we show the statistical errors in a few selected 
cases - the others behave similarly.

Finally we compute 〈ψ̄ψ〉3 as in (3). As discussed above in Sec-
tion 2, 〈ψ̄ψ〉3 is free from linear additive renormalization as well 
as from linear correction to scaling. It still needs a multiplicative 
renormalization, which is obviously the same Z p as for the chiral 
condensate, Table 1.

The temperature dependence of 〈ψ̄ψ〉3 is shown in Fig. 4. We 
used several functional forms to fit the temperature dependence of 
this observable, which shows a fast fall-off with temperature. We 
then find that the logistic curve is able to capture the behaviour 
for a sizeable range, while polynomial fits are limited to a few 
points. Upon the fit we tried to keep the fit interval fixed in units 
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Fig. 3. Chiral susceptibility as a function of temperature and its cubic spline interpolation. In some cases we also display the statistical errors, see the text.
T /Tc : for logistic fit the interval is roughly [0.8, 1.5], for polyno-
mial [0.8, 1.25]. We used both functional forms to estimate the 
pseudo-critical temperature and its systematic uncertainty. The fi-
nal results for the pseudo-critical temperature extracted from the 
chiral susceptibility and for 〈ψ̄ψ〉3 for all ensembles are presented 
in Table 3.

4. The magnetic Equation of State and 〈ψ̄ψ〉3

In Fig. 5 we show the results for 〈ψ̄ψ〉3 as a function of tem-
perature, with superimposed logistic fits. The results are converted 
to physical units using the lattice spacing and the multiplicative 
renormalization given in Table 1 and divided by m2/δ

π , with δ fixed 
at the O (4) value. At the critical temperature 〈ψ̄ψ〉3 ∝ m2/δ

π , hence 
〈ψ̄ψ〉3

m2/δ
π

should not depend on the mass at the critical point. The 
logic is similar to the one adopted in Refs. [33,52] when searching 
for the fixed point of χL/χT . The crossing point of the curves for 
the lightest masses identifies a candidate critical temperature in 
the chiral limit, T δ

0 = 138(2) MeV, where the superscript δ refers 
to T0 being estimated from the crossing point. Possible scaling vi-
olations would result in a mass dependence of T δ

0 .
Next, we fit to the 3D O (4) EoS with open critical tempera-

ture. We rely on a smoothing spline to define the EoS and we 
introduce appropriate (pion mass dependent) scaling parameters: 
4

gfit(x) = ag

(
x−T EoS

0
b

)
, where g(x) is given by EoS for the sub-

tracted condensate in Eq. (4). In Fig. 6, left, we show the results 
in physical units, with gfit(x) superimposed as interpolating lines, 
which at a first sight look satisfactory. However the would-be criti-
cal temperatures T EoS

0 are not constant with mass, signalling resid-
ual scaling violations: we find T EoS

0 = 142(2), 159(3), 174(2) MeV, 
from light to heavy masses. Only T EoS

0 for the physical pion mass is 
compatible with the previous estimate T δ

0 = 138(2) MeV, but there 
are obvious violations for larger masses. In the right-hand side of 
Fig. 6 we compare the mean field fits with the O (4) EoS: as it was 
already clear from Fig. 1, they are very close to each other. In the 
smaller interval they basically coincide, only for the larger interval 
shown here, and for the lightest mass, O (4) fits may be slightly 
favoured.

Finally, in Fig. 7 we show high temperature fit of the conden-
sate 〈ψ̄ψ〉3, constrained to the O (4) behaviour: 〈ψ̄ψ〉3 ∝ t−γ −2βδ

for T0 = 138 MeV.1 The results are rescaled by m3
l � m6

π , the an-
ticipated high temperature leading behaviour. In the interval of 
temperatures 160 MeV < T < 300 MeV (marked bold) the O (4)

1 The sensitivity to T0 is very moderate here. T0 itself is rather poorly constrained 
by the fit. For example, if one keeps T0 as a free parameter, then the fit for the 
physical pion mass mπ = 139 MeV gives T0 = 132 ± 4 MeV in the interval [150 :
300] MeV and T0 = 145.7 ± 0.6 MeV in the interval [160 : 340] MeV.
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Fig. 4. (Bare) 〈ψ̄ψ〉3 as a function of temperature T , for ensembles as indicated, and fits superimposed; see text for details.
Fig. 5. Search for the O (4) scaling of 〈ψ̄ψ〉3: at the critical temperature, 〈ψ̄ψ〉3

m2/δ
π

does 
not depend on the quark mass. The crossing point of the results for the two lightest 
masses picks a candidate critical temperature T δ

0 = 138(2) MeV.

prediction fares nicely through the data. For T � 300 MeV the be-
haviour is distinctly different, and the data collapse on a single 
curve, as expected of the leading mass term according to Griffith 
5

analyticity, regardless the critical behaviour. This suggests that the 
temperature extent of the scaling window above T0 extends up 
to about 300 MeV. Interestingly, in a previous study [5] we have 
found that this is also the threshold for a dilute instanton gas be-
haviour.

5. The scaling of the pseudo-critical temperatures and the chiral 
limit

In the summary Table 3 we present all pseudocritical temper-
atures. The results on the B ensembles help monitoring the finite 
spacing effects, and we confirm that they are small also for the 
new observables introduced here. A more detailed discussions on 
the continuum limit can be found in Ref. [5] as well as in ETMC 
papers, see e.g. Ref. [57], and references therein.

As discussed, we fit the pseudo-critical temperatures to a power 
law in the pion mass, see Eq. (2), where zp is tabulated for the dif-
ferent observables in Table 4, A is a universal constant depending 
on the normalization scales, and T0 ≡ Tc(mπ → 0) corresponds to 
the critical temperature in the chiral limit. We kept 2/(βδ) = 1.083
fixed to the value given by O (4) critical exponents. In Table 4
we present T0 and ratio of zp extracted from the fit as well as 
the prediction of O (4) scaling. There is a semi-quantitative agree-
ment with O (4) when considering the relative slopes of 〈ψ̄ψ〉 and 
〈ψ̄ψ〉3. When considering only the results for physical pion mass, 
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Fig. 6. Fits to the Equation of State: 3D O (4) (left), 3D O (4) and mean field (right). For mπ = 139 MeV the critical temperature T EoS
0 = 142(2) MeV is consistent with that 

estimated from the chiral extrapolation of the pseudo-critical temperatures (left); the data are compatible with mean field, with a mild tension building up for the physical 
pion mass (right).
Fig. 7. Fits to a constrained 3D O (4) behaviour for the different pion masses: the 
results in the interval of temperatures [160:300] MeV (marked bold) fare nicely 
through the data. For T > 300 MeV the behaviour is distinctly different, and the 
data follows m3

l � m6
π , the anticipated high temperature leading behaviour. χ2/d.o.f.

of the fit is 0.5/0.7/0.7 for pion masses mπ = 139, 225 and 383 MeV correspond-
ingly.

Table 4
Critical temperature in the chiral limit T0 and the ratio of zp extracted from the fit 
by Eq. (2). Last two columns contain predictions for zp from 3D O (4) scaling. Errors 
are only statistical.

Observable T0 [MeV] zp/zψ̄ψ3
zp/zψ̄ψ3

O (4) zp O (4)

χ 132(4) 1.24(17) 2.45(4) 1.35(3)
〈ψ̄ψ〉 138(2) 1.15(24) 1.35(7) 0.74(4)
〈ψ̄ψ〉3 132(3) 1 1 0.55(1)

with a critical temperature in the chiral limit within an acceptable 
range, zp/zp(ψ̄ψ3) = 1.46, with a large error.

The average of the extrapolated values of Tc in the chiral limit

T0 ≡ Tc(mπ → 0) = 134+6
−4 MeV (7)

is compatible with the estimated from the crossing point T δ
0 =

138(2) MeV, and only slightly below the estimate from the EoS 
for physical pion mass. This last point is consistent with the phys-
ical pion mass being close to the scaling window. Note that the 
error in Eq. (7) contains also systematic uncertainty, coming from 
extrapolation of different observables.
6

Similarly to Ref. [7] we also consider the breaking pattern 
corresponding to an effective restoration of the axial symmetry 
U (2)L×U (2)R → U (2)V , leading either to a second order transition 
with δ = 4.3(1), β = 0.40(4) or of first order transition, in which 
case the pseudo-critical behaviour would be driven by an endpoint 
in the Z2 universality class. In the first case the exponents are 
close to the O (4) ones and within our errors the results are indis-
tinguishable. For the first order scenario we rely on the experience 
gathered with three-flavor QCD, where it was found that the mix-
ing associated with the critical endpoint could well be low [60]. 
Hence, as in Ref. [7], we ignore the mixing and fit to

Tc(mπ ) = T0 + B(m2
π − m2

c )
1/βδ (8)

with 1/βδ = 0.64 for the Z2 3D universality class [61]. Also in 
this case, the critical exponents for O (4) and Z2 behaviour are 
close to each other, and it is very difficult to distinguish between 
these two scenarios. One can clearly see from Fig. 8 that the data 
can be also described with Z2 behaviour and critical mass up to 
mc ∼ 100 MeV. If, artificially, we constrained mc = 0, the lines 
would be indistinguishable from O (4). All in all, we concur with 
other observations [1,33] that extrapolation alone does not suf-
fice to discriminate among different scenarios. A possible way to 
distinguish between different universal behaviours would include 
simulations with lower pion masses [30]. On the positive side, the 
extrapolated values of the pseudo-critical temperatures T are ro-
bust (up to the critical pion mass mπ

cr) against the choice of critical 
exponents.

In Fig. 9 we compare our estimations of the pseudo-critical 
temperature with the results obtained by staggered [58,59] and 
Wilson [28,29] fermions. The nice agreement of our results with 
others can be appreciated. We also superimpose O (4) fits to our 
pseudo-critical temperatures and present our estimation of T0
in the chiral limit which compares well with the estimations of 
HotQCD Collaboration [30].

6. Summary

The chiral behaviour of the QCD transition is a difficult, much 
studied problem. Direct tests of universality are hampered by scal-
ing violations, and by the similarity among different scenarios. 
Here we have tackled these issues by introducing an order param-
eter, whose behaviour is closer to the critical one, hence with a 
reduced contribution from scaling violating terms; and by explor-
ing a larger parameter region, with the goal to follow the evolution 
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Fig. 8. Pseudocritical temperatures from the chiral observables with superimposed 
the 3D O (4) and Z2 scaling fits described in the text. χ2/d.o.f. for O (4) fit is 
χ2/d.o.f. = 2.1/1.0/2.5 for the chiral condensate �, for the chiral susceptibility χ
and the new observable �3. For Z2 fits the χ2/d.o.f. differs by maximum 20% from 
χ2/d.o.f. of O (4) fit.

Fig. 9. Pseudo-critical temperatures with their chiral extrapolations: comparison 
with the results from the HotQCD Collaboration [58], FASTSUM Collaboration [28,
29], Wuppertal-Budapest Collaboration [59]. The purple diamond at mπ = 0 marks 
the critical temperature [30] which compares well with our result T0 = 134+6

−4 MeV 
(light-green cross, slightly shifted for better readability).

from a scaling behaviour till a regular one, unrelated with critical-
ity.

Particularly interesting is the behaviour with physical quark 
masses. We have measured the pseudo-critical temperature for 
three different observables, finding critical temperatures in agree-
ment with staggered estimates for the chiral condensate and the 
chiral susceptibility. The new order parameter 〈ψ̄ψ〉3 gives a lower 
pseudo-critical temperature T�3 = 146.2(21)(1) MeV, in accor-
dance with its being closer to the true critical behaviour. We have 
used three different strategies for the computation of the criti-
cal temperature in the chiral limit: the first one is based on the 
scaling of 〈ψ̄ψ〉3 at the critical temperature T0(mπ = 0), the sec-
ond one is based on the fit of 〈ψ̄ψ〉3 to the magnetic Equation 
of State, which should give the value of T0 for each single pion 
mass, barring scaling violations, the last one is based on extrapo-
lation of the pseudo-critical temperatures extracted from different 
observables to the chiral limit. A search for the anomalous scal-
ing of 〈ψ̄ψ〉3 at the chiral transition picks the critical temperature 
of T0 = 138(2) MeV. For all the masses the results are apparently 
well described by the universal EoS, however only for the physical 
pion mass the estimated critical temperature T0 = 142(2) MeV ap-
proaches the results obtained by extrapolation, T0 = 134+6 MeV. 
−4

7

Fig. 10. Sketch of the critical region: the critical temperature in the chiral limit 
T0 is constrained from above from the pseudocritical temperature T�3 = 146(2)

MeV. The averaged extrapolation T0 = 134+6
−4 MeV satisfies this bound, and it is ro-

bust against different choices of critical scaling. It compares well with the estimate 
from anomalous scaling T δ

0 = 138(2) MeV. The different red shades indicate the 
compatibility with O (4) scaling. The labels indicate the pion masses that we have 
investigated, for temperatures ranging from 120 MeV till 500 MeV.

We note that the pseudo-critical temperature T�3 = 146.2(21)(1)

MeV for a physical pion mass serves as an upper bound for the 
critical temperature. As a final result for the critical temperature 
we quote T0 = 134+6

−4 MeV. In Fig. 9 we present our results for the 
pseudo-critical temperatures, their chiral extrapolation and com-
parison to the results of other groups, with which we find a nice 
agreement.

For larger masses the 3D O (4) EoS fits are indistinguishable 
from mean field, while a mild tension appears for the physical 
mass, with O (4) slightly favoured. The high temperature behaviour 
shows a clear threshold at temperatures about 300 MeV, above 
which a trend consistent with O (4) scaling gives way to a simple 
leading order analytic scaling dictated by Griffith analyticity. As a 
side comment, in a previous study [5] we have found that this is 
also the threshold for a dilute instanton gas behaviour. A threshold 
around the same temperature was also observed in other lattice 
studies [62–64]. Our observations are compatible with an onset of 
scaling around the physical value of the pion mass, and temper-
atures below 300 MeV. In Fig. 10 we sketch the critical region, 
highlighting the compatibility with O (4) scaling. Our results seem 
to be in contradiction with the results of [21,46], where scaling is 
observed only for very tiny pion masses. Possible sources of this 
discrepancy and connection to the presented results are the sub-
ject of future work and will be discussed elsewhere.

We also studied the possibility of first order phase transition in 
the chiral limit, in which case the observables are expected to scale 
according to Z2 universality class with some critical pion mass 
mc . Our data can be also described with Z2 behaviour and critical 
mass up to mc ∼ 100 MeV. Thus we conclude that extrapolation 
alone does not suffice to discriminate among different scenarios. 
Similar conclusions were reached in the two flavor model [7]. A 
possible way to distinguish between different universal behaviour 
would include simulations with lower pion masses [30,33], hoping 
to observe directly a first order transition. While a direct observa-
tion of such a first order transition would settle the issue, a lack 
of observation makes it difficult to exclude that such a transition 
appears at very low masses. We hope that by exploiting more the 
universal properties of the Equation of State, possibly using some 
of the strategies outlined here, and in comparison with analytic 
approaches, may provide a more solid answer.

It would also be interesting to repeat a similar analysis using 
staggered results for pion masses smaller than physical [33] as well 
as with FRG results [21]. Also, Fig. 1 suggests that results below 
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the critical temperature in the chiral limit may be useful to further 
discriminate true critical behaviour from mean field.

This work should be ameliorated and extended along several 
lines: we have not performed a continuum limit extrapolation. The 
indirect checks performed by the ETMC collaboration as well as 
by ourselves [5], and the good consistency of the results at the 
larger mass, see Table 3, give some confidence that residual spac-
ing corrections should not exceed a few percent. The fixed scale 
approach has several advantages, but we have to rely heavily on 
interpolations. Results on finer lattices should also help in this re-
spect, by producing results at intermediate temperatures. Since the 
ETM Collaboration has recently released a new set of zero temper-
ature tuned parameters [57], we hope to return to this point in the 
future. Finally, we have completed an analysis of correlators and 
screening masses on the configurations for physical pion mass, to 
complement the discussion on chiral and axial symmetry, and the 
results will appear soon [65].
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