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Abstract In this paper we study the properties of QCD
at nonzero chiral density ρ5, which is introduced through
chiral chemical potential μ5. The study is performed within
lattice simulation of QCD with dynamical rooted staggered
fermions. We first check that ρ5 is generated at nonzero μ5

and in the chiral limit observe ρ5 ∼ Λ2
QCDμ5. We also test

the possible connection between confinement and topolog-
ical fluctuations. To this end, we measured the topological
susceptibility χtop and string tension σ for various values of
μ5. We observed that string tension grows with μ5. It seems
that topological susceptibility also rises with μ5, but to state
this more reliably the uncertainties should be reduced. We
believe that our results indicate possible connection between
topological fluctuations and the strength of confinement.

1 Introduction

Quantum Chromodynamics (QCD) is believed to be the the-
ory of strong interaction. While microscopic QCD Lagrangian
is well known, the theory itself is extremely complicated and
possesses a plenty of not fully understood nontrivial proper-
ties and phenomena. The most well-known examples include
color confinement and chiral symmetry breaking.

One of the possible ways to shed light on these phenom-
ena and their mechanism is to investigate QCD or QCD-like
theories under extreme conditions. These extreme conditions
include finite temperature studies [1–4], the influence of large
magnetic field on QCD properties [5–10], QCD and QCD-
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like theories at finite baryon density [10–18] and QCD at
finite isospin density [19–22].

Among others are the properties of QCD at nonzero chiral
density. Systems with nonzero chiral density attract consid-
erable attention because of unusual phenomena which take
place in such systems. The renowned example of such phe-
nomena is the chiral magnetic effect (CME) [23,24], the
appearance of electric current in chiral medium along applied
magnetic field.

Nonzero chiral density can be generated in heavy ion
collisions either due to sphaleron transitions in quark-gluon
plasma [25–27] or due to the axial anomaly in parallel elec-
tric and magnetic fields [28]. Although its possible magni-
tude is under active debate, there are indications that it might
reach relatively high valuesρ5 = 8.85 × 10−1fm−3 [29].
Nonzero chiral density is not conserved and depletes with
time. Nonetheless, its relaxation time is expected to be rela-
tively large, comparable with the life-time of Quark–Gluon
Plasma [30,31], or much larger [32]. It allows to conclude
that nonzero chiral density can be treated as external param-
eter and makes it interesting to study the properties of Quan-
tum Chromodynamics with nonzero chiral density. There are
a lot of studies of QCD properties with chiral density which
is introduced through nonzero chiral chemical potential [33–
44].

One of the interesting questions which can be addressed
is how the confinement and the chiral symmetry break-
ing in QCD are affected by nonzero chiral density. The
influence of nonzero chiral chemical potential on the chi-
ral symmetry breaking was considered in a number of
theoretical papers [33–37,41,44] as well as in the lat-
tice studies [42,43]. Today it is clear that in any system
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the chiral chemical potential either creates or enhances
the dynamical chiral symmetry breaking depending on
the strength of interactions between constituents in the
media. This phenomenon was called the chiral catalysis
and the mechanism responsible for this phenomenon was
first explained in [44]. The essence of this phenomenon is
that nonzero chiral density generates additional fermionic
states which take part in the formation of the chiral conden-
sate.

In this paper we mainly address three questions. First,
we show that introduction of nonzero μ5 to the system
Hamiltonian leads to generation of nonzero chiral density
ρ5. We study its dependence within lattice simulation of
QCD and compare the observed behavior with the exist-
ing models such as ChPT and NJL. Second, we study the
influence of chiral density on topological structure of QCD.
Finally, we study the confinement in QCD with nonzero μ5

and its connection to the topology of QCD. The possible
link between these phenomena was introduced in [45,46].
Namely, the authors suggested to modify the gluon prop-
agator to have the form G(p) = (p2 + χtop/p2)−1 due
to Veneziano ghosts tunnelling between different topolog-
ical sectors of QCD. This form of gluon propagator implies
maximum propagation range of order χ

−1/4
top and suggests

enhancement of confinement with the growth of topologi-
cal susceptibility. To check this connection, we study the
string tension σ between heavy quark and antiquark at
nonzero μ5 and its correlation with topological susceptibility
χtop.

It is well known that introduction of baryon chemical
potential leads to the sign problem in SU (3) theory and spoils
the LQCD simulations. On contrary, introduction of the chi-
ral chemical potential does not lead to the sign problem [23],
which allows us to carry out this study within lattice simula-
tion of QCD.

This paper is organized as follows. In the next section we
discuss the chiral density generated by nonzero chiral chem-
ical potential in QCD. In the Sect. 3 we describe the details
of our lattice simulation. Our results are presented in the
Sect. 4. In the last section we discuss our results and draw
the conclusions. In Appendix A we derive the chiral density
for free naïve fermions and study divergences in the chiral
density.

2 Nonzero chiral chemical potential in QCD

In this paper we are going to study the properties of QCD
with nonzero chiral density ρ5 = ψ̄γ4γ5ψ . It is well known
that nonzero baryon density can be introduced to statistical
system through modification of the Hamiltonian in the parti-

tion function Ĥ → Ĥ − μ
∫
d3xψ̄γ4ψ .1 Similarly, one can

modify the Hamiltonian by the term with chiral chemical
potential μ5

Ĥ → Ĥ − μ5

∫
d3xψ̄γ4γ5ψ. (1)

We would like to stress that the chiral chemical potential is
different to the baryon chemical potential since chiral density
is not conserved. There are two operators resulting in the non-
conservation of the chiral density

d

dt

∫
d3xρ5 = αs Nc

4π

∫
d3xFa

μν F̃
a
μν

+2m
∫
d3xψ̄γ5ψ. (2)

The first operator ∼ Fa
μν F̃

a
μν is the anomalous contri-

bution due to quantum corrections. The second operator
∼ mψ̄γ5ψ results from the equation of motion for massive
fermions. Note that chirality is not well-defined for mas-
sive fermions due to the possible spin flipping process. The
dynamical fermion mass generation ∼ ΛQCD due to the chi-
ral symmetry breaking can significantly increase the effect
of spin flipping. Thus, the physical meaning of modification
(1) should be discussed more carefully. It is clear that the ρ5

operator becomes the true chiral density only in the mass-
less limit ρ5

∣
∣
m→0= (QR − QL)/V . For massive quarks the

meaning of the ρ5 operator should be considered in more
detail.

Chemical potential is usually introduced with respect to
conserved charge. In our study we consider μ5ρ5 as the new
term in the Hamiltonian and the conservation of ρ5 is not
required. We expect that the modification (1) leads to nonzero
averaged value of the chiral density operator 〈ρ5〉 �= 0 even
for nonzero quark mass. The situation with μ5 and ρ5 is
similar to the one with the fermion mass term mψ̄ψ . The
conservation of the ψ̄ψ operator is not required and once
this operator is introduced to the Hamiltonian it leads to the
generation of nonzero condensate 〈ψ̄ψ〉 �= 0. To show that
it is very likely that non-zero μ5 will result in non-zero ρ5

generation even at finite quark mass, let us consider various
models of QCD.

First, in terms of fermionic spectrum, the modification of
the Hamiltonian (1) modifies the dispersion relation E2(p) =
(|p|−sμ5)

2 +m2 [33], where s = ±1 is the fermion helicity.
For μ5 > 0 this implies that at fixed momentum |p| the
fermion with helicity s = +1 has smaller energy than the
one with s = −1. In thermodynamic equilibrium there will
be a larger number of fermions with helicity s = +1 than
that with s = −1. So one can expect that the modification
(1) leads to nonzero helicity even at nonzero quark mass.

1 In this paper we study QCD in thermodynamic equilibrium. So,
instead of real time one has Euclidean time which is designated as
a fourth component of four-vector. In particular, we use the following
notation γ4 = γ0.
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We proceed with the consideration of SU (Nc) QCD with
finite chemical potential in the large Nc limit Nc → ∞.
At low temperature T the chiral perturbation theory (ChPT)
[47,48] can be applied. In the leading order in 1/Nc there is
no contribution of the anomalous term. Modification (1) only
adds the flavour singlet axial current Aμ = μ5δμ41̂ and the
modification of the partition function due to the introduction
of this axial current within ChPT reads

Z(μ5) = ZQCD × exp (βV N f f
2
π μ2

5), β = 1

T
. (3)

From Eq. (3) it is seen that nonzero μ5 leads to the addi-
tional constant factor in the QCD partition function, i.e. it is
not related to dynamical degrees of freedom of the ChPT. This
is because the ChPT accounts the chiral symmetry breaking
in QCD but it does not provide its mechanism. In more com-
plicated models [49,50] which consider the chiral symmetry
breaking mechanism, the μ5 couples to the scalar σ and η′
fields, which leads to enhancement of the chiral symmetry
breaking with μ5 and the chiral catalysis phenomenon in
QCD [44].

From (3) for two flavor QCD one has

〈ρ5〉 = 1

βV

∂ log Z(μ5)

∂μ5
= 4 f 2

π μ5. (4)

So, one can see that the modification of the Hamiltonian
(1) indeed leads to nonzero 〈ρ5〉 in the limit Nc → ∞ even
at nonzero quark mass.

Similar study can be carried out in the Nambu–Jona–
Lasinio (NJL) model [51], which successfully describes low
energy phenomenology of QCD. Since the NJL model is
usually studied within the saddle point approximation, a
lot of results are obtained within the Nc → ∞ assump-
tion. Within the NJL model, the chiral symmetry break-
ing leads to the generation of the dynamical quark mass
m ∼ ΛQCD . The calculation of the chiral density with
the quark mass m ∼ ΛQCD gives 〈ρ5〉 ∼ Λ2

QCDμ5 (see
Appendix A). This is another argument in favor of the hypoth-
esis that non-zero chiral density can be generated at finite
mass 〈ρ5〉 ∼ Λ2

QCDμ5 �= 0.
On the one hand the approximation Nc → ∞ works

quite well for real QCD. So, one might expect that 〈ρ5〉 ∼
Λ2

QCDμ5 �= 0 for Nc = 3. However, the anomaly contribu-
tion which appears in higher orders ∼ 1/Nc–corrections can
modify the Nc → ∞ result for the chiral density. To clarify
the Nc = 3 behavior in Sect. 4 we conduct lattice study of
chiral density ρ5 at nonzero chiral chemical potential.

3 Lattice setup

In this paper we are going to study QCD with two flavours and
nonzero chiral chemical potential. To this end we perform lat-

tice simulations with the SU (3) gauge group and employed
the tree level improved Symanzik gauge action [52,53]. For
the fermionic part of the action we used staggered fermions
with the action [43]

S f = ma
∑

x

ψ̄xψx

+ 1

2

∑

xμ

ημ(x)(ψ̄x+μUμ(x)ψx − ψ̄xU
†
μ(x)ψx+μ)

+ 1

2
μ5a

∑

x

s(x)(ψ̄x+δŪx+δ,xψx − ψ̄xŪ
†
x+δ,xψx+δ),

(5)

where the ημ(x) are the standard staggered phase factors:
η1(x) = 1, ημ(x) = (−1)x1+...+xμ−1 for μ = 2, 3, 42. The
lattice spacing is denoted by a, the bare fermion mass by
m, and μ5 is the chiral chemical potential. In the chirality
breaking term s(x) = (−1)x2 , δ = (1, 1, 1, 0) represents a
shift to the diagonally opposite site in a spatial 23 elementary
cube. The combination of three links connecting sites x and
x + δ,

Ūx+δ,x = 1

6

∑

i, j,k=perm(1,2,3)

Ui (x + e j + ek)Uj (x + ek)Uk(x)

(6)

is symmetrized over the 6 shortest paths between these sites.
In the partition function, after integrating out fermions, one
obtains the corresponding fermionic determinant. In order to
obtain two flavours in the continuum limit we apply the root-
ing procedure. Simulations were performed using Rational
Hybrid Monte Carlo algorithm.

In the continuum limit and after rooting procedure our
lattice action can be rewritten in the Dirac spinor-flavor basis
[56,57] as follows

S f → S(cont)
f =

∫
d4x

2∑

i=1

q̄i (∂μγμ + igAμγμ

+ m + μ5γ5γ4)qi .

(7)

We would like to emphasize that the chiral chemical poten-
tial introduced in Eq. (5) corresponds to the taste-singlet oper-
ator γ5γ4 ⊗ 1 in the continuum limit.

It should be also noted here that the baryonic chemical
potential [58] and the chiral chemical potential as in [59],
are introduced to the action as the modification of the tem-
poral links by the corresponding exponential factors in order

2 It is important to note that staggered fermions generate the correct
non-Abelian chiral anomaly [54,55].
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to eliminate chemical-potential dependent quadratic diver-
gences. For staggered fermions with the baryonic chemical
potential this modification can be performed. However, in the
case of μ5 this method would lead to a highly non-local action
[59]. Therefore, we introduce μ5 in Eq. (5) in the additive
way similarly to the mass term. It is known that the additive
introduction of the chemical potential might lead to addi-
tional divergences in observables. In this paper we perform
lattice measurement of chiral density and gluonic observ-
ables: the topological charge, the topological susceptibility
and the string tension. In what follows we account ultravi-
olet divergences in the chiral density. We also believe that
there are no additional divergences due to chiral chemical
potential in gluon observables, because the chiral chemical
potential term can be considered as some vertex with cou-
pling constant of dimension of energy. It is known that the
inclusion of such vertex to Feynman diagrams reduces the
power of ultraviolet divergences. Since the fermion loops in
QCD diverge as powers of log a, the chiral chemical potential
does not give rise to additional divergences. The ultraviolet
divergences in QCD with chiral chemical potential are also
discussed in [42,43].

The physical lattice spacing a was determined from set-
ting Sommer parameter r0 [60] to its physical values r0 =
0.468(4) fm [61]. Simulation for scale setting were per-
formed with the lattice size 244, μ5 = 0 and fixed ma =
0.01. Since the Sommer scale very mildly depends on the
quark mass [62], the physical units are almost independent
from the quark mass. Notice also that as was shown in papers
[42,43] nonzero μ5 does not affect to the scale setting pro-
cedure.

In the calculation we employed three different lattices
with different lattice spacings to keep the physical volume
fixed at approximately 1.7 fm3: 144 with a = 0.128(3) fm
(β = 3.9), 164 with a = 0.1054(11) fm (β = 4.0) and
204 with a = 0.0856(14) fm (β = 4.1). To investigate chi-
ral properties for each of the listed lattices three values of
pion mass were considered: mπ = 563, 762, 910 MeV. We
summarize lattice parameters of the simulations and number
of configurations in Table 1, during the generation of ensem-
bles only configurations separated by 4 MD-trajectories were
saved, and the typical length of Molecular Dynamics trajec-
tory was close to 1. We note that the simulations performed
in this paper indicate that the required simulation time grows

with the chiral chemical potential. Lattice simulations at the
largest values of chiral chemical potential are numerically
very expensive. Statistical error analysis was performed with
binned jack-knife method and typical bin size O(100) con-
figurations. We checked, that this bin size is big enough to
incorporate autocorrelation time for all observables consid-
ered in this study.

4 Results of the calculation

4.1 The chiral density

In this section we perform lattice measurement of the chi-
ral density ρ5 for all lattice spacings and pion masses under
study. The chiral densities as a function of the chiral chemi-
cal potential for different pion masses and a = 0.105 fm are
shown in Fig. 1. The chiral densities for other lattice spacings
look similar. For this reason we do not show them. From the
upper panel of Fig. 1 one sees that the data are well described
by the linear dependence. It turns out that the coefficient of
this linear dependence can be mostly attributed to the ultravi-
olet divergence in ρ5. However, our data are rather accurate.
Typical uncertainty of the calculation is ∼ 0.1%, for this rea-
son we can extract the sub-leading terms on the background
of leading ultraviolet divergence.

To proceed we need to know the structure of the diver-
gences in ρ5. In Appendix A the study of the ultraviolet
divergences in ρ5 for free naïve fermions is presented. In
particular, it is shown that there are two ultraviolet diver-
gences in the term linear in μ5. The leading divergence is
quadratic and the next-to-leading divergence is logarithmic.
Additionally, the linear in μ5 term contains finite contribu-
tion. Finally higher terms in μ5 expansion do not contain
ultraviolet divergences.

In this paper we are going to use the following anzats for
ρ5 which accounts for the results obtained in Appendix A:

a3ρ5 = E(aμ5)
3 + (A + a2B + C1(ma)2 +

+D(ma)2 log(ma)2 + Fa2(ma)2 + Xa4) × (aμ5). (8)

This fit gives decent description of the data χ2/ndof ∼ 3.
Since the measurements of ρ5 are quite accurate (at some
points the error is only 0.05 %), we are able to fix all the
parameters with the error of not worse than 15 %. Remov-

Table 1 Lattice parameters and typical number of configurations used in the simulations

β a, fm L4 ma μ5a Statistics

3.9 0.128(3) 144 0.0148, 0.0296, 0.0445 0.0, 0.152, 0.304, 0.365, 0.487, 0.609 (3 − 7) × 103

4.0 0.1054(11) 164 0.01, 0.02, 0.03 0.0, 0.125, 0.25, 0.30, 0.40, 0.50 (1 − 3) × 103

4.1 0.0856(14) 204 0.00658, 0.01316, 0.1974 0.0, 0.1015, 0.2030, 0.2436, 0.3248, 0.4060 (6 − 9) × 103
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Fig. 1 The chiral densities as a function of the chiral chemical potential
for different pion masses and a = 0.105 fm, unrenormalized (upper
panel) and after the subtraction of divergent parts (lower panel)

ing of any of the terms in (8) leads to significant growth of
χ2/ndof. However, adding higher powers of ma and a to the
fit does not improve the quality.

Among the coefficients in Eq. (8), A and D correspond to
the divergencies. In the lower panel of Fig. 1 we present the
results for the chiral density ρ5 after the subtraction of these
divergent parts.

It is important to notice that the coefficient B from (8) is
non-zero and B = (340(10) MeV)2. This coefficient param-
eterizes the chiral density in the continuum and in the chi-
ral limits. For this reason we can state that B ∼ Λ2

QCD or

ρ5 ∼ Λ2
QCDμ5. Notice, however, that it is not possible to

write exactly ρ5 = Bμ5 since the multiplicative renormal-
ization of ρ5 might be important but goes beyond the scope
of this paper. To summarize, the results of this section allow
us to state that finite μ5 generates nonzero chiral density
ρ5 ∼ Λ2

QCDμ5+O(μ3
5). This finding up to the proportional-

ity coefficient is in striking agreement with the recent calcula-
tions performed within effective models [63,64], although in
these papers authors get somewhat smaller values of the coef-

ficient B. We believe, that this may be attributed to possible
multiplicative renormalization of the results. Also, we would
like to point our that the fit parameters obtained within Eq. 8
are in quantitative agreement with the free naive fermion
computation performed in Appendix A. For instance, the
value obtained within the fitting A = −0.3006(3) might be
just a multiplicative renormalization of −0.4648 from Eq. 18.
Similarly, the leading μ3

5 coefficient E = 0.0967(2) is sug-
gestively the renormalized J2 from Eq. 18. We thus conclude
that the results obtained within fully interacting theory qual-
itatively agree with naive computation in free theory.

4.2 The topological charge and topological susceptibility

Our next task is to study how nonzero chiral chemical poten-
tial influences the topological properties of QCD. To this end
we measure the topological charge 〈Q〉 and the topological
susceptibility

〈
Q2

〉
for different values of the chiral chemical

potential under study.
Our measurement of the topological charge and the topo-

logical susceptibility mainly follows [65]. We smoothen each
configuration using the Gradient Flow [66,67]. Topological
charge is measured on the smoothened configurations

QL = − 1

512π2

∑

x

±4∑

μνρσ=±1

ε̃μνρσ TrUμν(x)Uρσ (x) , (9)

where Uμν(x) is the plaquette at the point x in directions
μ and ν. In order to reduce the lattice artifacts we used the
following estimators of the topological charge Q:

Q = round (αQL) , (10)

where round gives the closest integer to its argument and the
factor α is chosen in such a way that it minimizes

〈(αQL − round (αQL))2〉 . (11)

In other words, we rescale our definition of the topological
charge QL so that its peaks become closer to integer values
and then round the result to this integer value. The topological
susceptibility is then defined as

χtop = 〈Q2〉
V4

, (12)

where V4 is the four-dimensional volume of the lattice. We
have found that for Gradient Flow times t/a2 > 3.0 the
dependence of the topological susceptibility χtop on the value
of Gradient Flow time exhibits a plateau with almost no
dependence on the value of t . The value at this plateau was
taken as a final estimation for the topological susceptibility
χtop. In the Appendix B we study systematic effects, such as
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Fig. 2 The topological susceptibility as the function of the chiral chem-
ical potential for different pion masses in the continuum limit per-
formed using the non-singlet pion mass correction of χ1/4(a) procedure
described in Appendix B

topological freezing and discretization errors of the topolog-
ical susceptibility.

Our results for the topological properties of QCD are the
following. The topological charge is zero within the uncer-
tainty of the calculations for all pion masses, lattice spacings
and chiral chemical potentials under study.

In Fig. 2 we show the topological susceptibility as the
function of chiral chemical potential for different pion masses
in the continuum limit performed according to the non-
Goldstone correction procedure described in Appendix B.
Note that errorbars contain both statistical and systematic
uncertainty, the detailed description of error estimation can
be found in Appendix B. The chiral chemical potential seems
to enhance the topological fluctuations in QCD for all pion
masses, but our data need to be improved to make more strict
statements.

A possible explanation of this behaviour is the follow-
ing. As we know nonzero chiral chemical potential leads to
generation of nonzero chiral charge in the system with some
average value Q5. Due to the anomaly this chiral charge
can annihilate to gluon configurations with nonzero Chern–
Simons number, which is compensated by an inverse pro-
cess: creation of the chiral charge from gluon background
with Chern-Simons number. In the thermodynamic equilib-
rium these processes compensate each other leading to some
fixed average value of the chiral density. Notice also that
both processes result from the chiral anomaly. Further let
us consider the process of annihilation of the chiral charge
as a number of elementary processes in which one quark
and one antiquark annihilate to gluon configuration with
nonzero Chern–Simons number. It is reasonable to assume
that the larger the chiral charge the larger the number of ele-
mentary annihilations per time unit in the system. In other

words the larger the chiral charge Q5 the larger average
〈dQ5/dt〉annihilation for the annihilation processes. Notice
that is completely compensated by the inverse process lead-
ing to the total 〈dQ5/dt〉 = 0 From this picture one can
expect that the larger the chiral charge the larger the topo-
logical fluctuations in the system under investigation. Our
results imply that μ5 is the parameter which allows influ-
encing the topological sector of QCD through the anomaly
equation.

4.3 The string tension

In order to study how nonzero chiral density influences the
confinement properties of QCD we calculated the interac-
tion potential of static charges through the measurement
of Wilson loops. To obtain reasonable signal-to-noise ratio
for Wilson loops the smearing techniques were employed.
One step of the hypercubic blocking [68] with parameters
α = (1.0, 1.0, 0.5) [69] was performed for the temporal
links only, followed by 24 steps of the APE smearing [70]
with αAPE = 0.165.

The quark-antiquark interaction potential is related to Wil-
son loops as

V (R) = lim
t→∞ log

[ 〈W (R, t)〉
〈W (R, t + 1)〉

]
. (13)

This logarithm exhibits a clear plateau at large times t/a ∈
[5; 9], its height was extracted as V (R).

String tension σ was obtained from fitting of the potential
in the range R ∈ [3.5a; Ls/2] by the Cornell fit

V (R) = A − α/R + σ R . (14)

This fit provides χ2/ndof � 1 for all values of chiral chem-
ical potentials. To estimate systematic uncertainty the left
fitting range was varied in the interval [3a; 4a] and the pro-
duced small change of ∼ 0.5% in the string tension was
added to the statistical error. Change of the right boundary
of R in the fit does not alter the results in a noticeable way.
Statistical errors for the fit parameters were estimated with
the jackknife method.

It is worth to note, that the Wilson loop corresponds to
an operator, that creates the static color sources and a string
between them, and this operator has a small overlap with the
state, corresponding to a broken string [71], thus the string
breaking phenomenon can not be observed from the Wilson
loops. On the other hand, for finite lattice due to the p.b.c. in
spatial directions the maximal achievable separation between
q and q̄ is Ls/2, which in our case corresponds to 0.85 fm
(Ls ≈ 1.7 fm, see Table 1). The string breaking for the phys-
ical pion mass appears near 1 fm, and in our study due to
the heavier pions this should occur ever at larger qq̄ sepa-
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Fig. 3 The ratio of the string tension σ to the string tension at zero
chiral chemical potential σ0. Points for different pion masses are slightly
shifted in horizontal axis for better visibility

ration. Thus extraction of quark-antiquark interaction poten-
tials from Wilson loops does not lead to any problems as far
as we investigate V (R) at distances, which are smaller than
the string breaking distance. The same argument applies to
the choice of Cornell potential for V (R) fitting.

We do not observe any significant dependence of the string
tension on the lattice spacing a. Thus, we perform the con-
stant fit of the string tension versus a to average over different
lattice spacings. The quality of such fit is good, χ2/ndof < 1.
The ratio of the string tension σ (extrapolated to continuum
in the above described way) to the string tension at zero chiral
chemical potential σ0 is presented in Fig. 3. It is seen from
Fig. 3 that the string tension rises with the chiral chemical
potential i.e. with the chiral density.

4.4 Topological fluctuations and confinement

The phenomenon of the QCD confinement is not well under-
stood on the present day. However, papers [45,46] have estab-
lished a possible link between confinement properties and
QCD topology. In their setup, gluon propagator is mod-
ified by the interaction with Veneziano ghosts tunneling
between different topological sectors. The gluon propaga-
tor then reads G(p) = (p2 + χtop/p2)−1, where χtop is the
topological susceptibility. The propagator has only complex
poles p2 = ±iχ1/2

top , thus gluons cannot propagate as free
particles. The typical range of gluon propagation decreases
as χ

−1/4
top with the growth of topological susceptibility.

Our results might be in agreement with this picture of
confinement. As one can observe from Sect. 4.2, it seems
that the topological susceptibility is enhanced by μ5. We
also observe ( see Sect. 4.3) that the confining properties,
namely the string tension, are also enhanced by μ5. Notice,

however, that to make our statement more reliable one should
reduce the uncertainties in the topological susceptibility.

5 Conclusion and discussion

In this paper we studied the properties of QCD at nonzero chi-
ral density ρ5, which is introduced through the chiral chem-
ical potential μ5. Contrary to the baryon chemical poten-
tial introduction of the chiral chemical potential does not
lead to the sign problem. For this reason our study of QCD
with nonzero chemical potential can be performed within
lattice simulation. In the simulations we employed the tree
level improved Symanzik gauge action and rooted staggered
fermions which in the continuum limit correspond to N f = 2
dynamical quarks.

In the calculation we employed three different lattices with
different lattice spacings to keep the physical volume fixed at
approximately 1.7 fm3: 144 with a = 0.128(3) fm (β = 3.9),
164 with a = 0.1054(11) fm (β = 4.0) and 204 with a =
0.0856(14) fm (β = 4.1). To investigate the chiral properties
for each of the listed lattices three values of pion mass were
considered, mπ = 563, 762, 910 MeV.

The first observable considered in this paper is the chi-
ral density. We found that nonzero chiral chemical potential
leads to generation of nonzero chiral density in QCD. Our
lattice results support ChPT formula for the chiral density
ρ5 ∼ Λ2

QCDμ5.
The next question is the influence of nonzero chiral chemi-

cal potential on the topological properties of QCD. To address
this question we measured the topological charge and the
topological susceptibility for various values of μ5. We found
that the topological charge is zero for all values of the chiral
chemical potential under investigation. It seems that topo-
logical susceptibility rises with μ5.

The last observable studied in this paper is the string ten-
sion. We calculated the static potential from Wilson loops and
determined the string tension for all values of chiral chemi-
cal potentials at lattice parameters studied. We found that the
string tension rises with rising chiral chemical potential.

It would be interesting to understand the mechanism how
confinement in QCD is enhanced by nonzero chiral chem-
ical potential. One possible explanation can be based on
the results of [45,46], where the authors considered the
gluon propagator, modified due to Veneziano ghosts tun-
neling between different topological sectors, making gluons
confined at typical distances ∼ χ

−1/4
top where χtop is the topo-

logical susceptibility. Our results might confirm this picture
of confinement. The topological susceptibility seems to be
enhanced by μ5. The string tension, describing the confin-
ing properties, also grows with μ5. However, to make our
statement more reliable, the uncertainties in the topological
susceptibility should be reduced.
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Another possible explanation is that the gluon fields gen-
erated in the system due to fluctuations of ρ5 might have
nontrivial properties which give rise to the confinement. In
particular, if the gluon fields are self-dual due to the ρ5 fluctu-
ations they might enhance the confinement [72–75]. Unfor-
tunately, quite large uncertainties of the calculation do not
allow us to draw any strong conclusion about the origin of
confinement enhancement with μ5. This question including
the mechanism of self-dual gluon fields is the subject for
further research.
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A Ultraviolet divergences in the chiral density for free
naïve fermions

To get an idea about the ultraviolet divergences in the chiral
density at nonzero chiral chemical potential in this section we
are going to derive the chiral density for free naïve fermions.
The fermion propagator including the chiral chemical poten-
tial for naïve lattice fermions can be written in the following
form:

Sαβ(x, y) = δαβ

Lt L3
s

∑

{p}

∑

s

eip(x−y)

−i
∑

μ γμ sin(pμ) + ma + (μ5a)γ4γ5

sin2(p4) + (|p| − s(μ5a))2 + (ma)2
× P(s),

P(s) = 1

2

(

1 − is
∑

i

γi sin(pi )

|p| γ0γ5

)

, i = 1, 2, 3,

|p|2 = sin2(p1) + sin2(p2) + sin2(p3),

pi = 2π

Ls
ni , i = 1, 2, 3, ni = 0, ..., Ls − 1,

p4 = 2π

Lt
n4 + π

Lt
, n4 = 0, ..., Lt − 1. (15)

Here m and μ5 are mass and chiral chemical potential in
physical units, α, β are color indices, the sum is taken over
all possible values of (n1, n2, n3, n4), s = ±1 and a is a
lattice spacing.

In the limit Ls, Lt → ∞ the chiral density in lattice units
for two fermion flavours can be written as

〈ψ̄γ4γ5ψ〉lat = −3N f

16
Sp

[
γ4γ5S(x, x)

]

= −3

4

∑

s=±1
∫

d4 p

(2π)4

s|p| − μ5a

sin2 p4+(|p| − s(μ5a))2+(ma)2

(16)

It should be noted here that the factor 3 in the first equal-
ity is due to the sum over the fermion colors. Now let us
expand the chiral density (16) in powers of the chiral chemi-
cal potential. It turns out that it is sufficient to keep only two
terms: ∼ μ5 and ∼ μ3

5. Higher order terms in this expan-
sion do not contain ultraviolet divergences. The calculation
of the integrals which appear in this expansion is rather cum-
bersome but straightforward. For this reason we don’t show
the details of the calculation. We would like only to mention
that the integrals which appear in the expansion of (16) in μ5

can be found in [76]. The resulting expression for the chiral
density ρ5 in physical units can be written in the following
form

ρ5 = 1

a3 〈ψ̄γ4γ5ψ〉lat = μ5 J1 + μ3
5 J2 + O(μ5

5)

J1 = −0.464800
1

a2 − 3

π2 m
2 log(ma)2 + 0.807241m2

J2 = 0.242419 (17)

Now few comments are in order.

– From Eq. (17) we notice that there are two divergences
in the linear in the μ5 term. The leading divergence is
quadratic and the next-to-leading divergence is logarith-
mic.

– In addition to the divergences the linear in the μ5 term
contains finite contribution which is proportional to the
fermion mass in the second power ρ5 ∼ m2μ5. Now
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recall that in Nambu–Jona–Lasinio model [51], which
successfully describes low energy phenomenology of
QCD, the chiral symmetry breaking leads to generation of
the dynamical fermion mass m ∼ ΛQCD . For this reason
one can expect that due to chiral symmetry breaking in
QCD the renormalized ρ5 ∼ Λ2

QCDμ5. ChPT confirms
this statement (see Sect. 2).

– Notice also that the logarithmic ultraviolet divergence is
also possible in the μ3

5 term. However, final result does
not contain the logarithmic ultraviolet divergence.

– If one takes the chiral limit in formula (5), it is possible
to get rid of logarithmic divergence as well as final term
proportional to m2. Unfortunately it is not possible to get
rid of the 1/a2 divergence which results from the addi-
tive way of introducing the chiral chemical potential. In
addition to the divergence the additive chemical potential
modifies the coefficient in front of the μ3

5 contribution.
For free chiral fermions this coefficient is determined by
Fermi distribution and for three colors and two flavours
it is ρ5(μ5) = 2/π2 · μ3

5 � 0.202642 · μ3
5 ([23]). Com-

paring this value with the J2 in formula (17) it is seen
that lattice artificial contribution is rather small but it is
present. In this paper we concentrate on the linear in μ5

term, thus the fact that the coefficient of the μ3
5 term is

modified by lattice artifacts does not affect the results of
this paper.

B Topological susceptibility in the continuum limit

It is known that measuring the topological susceptibility
on the lattice is a challenging task. First, lattice simulations
suffer from topological freezing: transitions between sectors
with different topological charge values can be suppressed
and system can be stuck in one topological sector. We have
checked, that in our simulations this was not the case. In Fig. 4
we present the Monte Carlo history of topological charge
versus the configuration number and also the histogram of
the topological charge per configuration for the lattice size
204, the lattice spacing a = 0.0856 fm, bare quark mass
is ma = 0.00658, chiral chemical potential μ5 = 0. MC
histories for other lattice spacings (see Table 1) look the same,
thus we do not present them here. One may clearly see, that
in our simulations transitions between various topological
sectors occur often enough, also the histogram for topological
charge is broad.

Another problem is that topological susceptibility χ suf-
fers from large discretization errors. To check the depen-
dency of our data on a finite lattice step, we performed con-
tinuum extrapolation for χ , using two various procedures,
described in [77,78]. In the case of zero chiral chemical
potential μ5 = 0 we compare our results with the predic-
tions of the Chiral Perturbation Theory (ChPT).

Fig. 4 Monte Carlo history of topological charge(upper panel) and
histogram of topological charge distribution(lower panel). Lattice size
is 204, lattice step a = 0.0856fm, quark mass is ma = 0.00658 and
chiral chemical potential μ5 = 0

First of all, in [78] it is noted that the dominant source of
lattice artefacts in χ1/4(a) is the chiral symmetry breaking
present at finite lattice spacing in the staggered discretization.
The dependence of χ1/4(a) on the lattice spacing can be
significantly reduced if instead of χ1/4(a) the quantity

χ
1/4
tc (a) = mπ

mngb(a)
χ1/4(a) (18)

is considered. Here mngb(a) is the mass of one of the non-
Goldstone pions, i.e. of a state that becomes massless in the
chiral limit only if the continuum limit is taken. Clearly,
mngb → mπ as a → 0, so in the continuum limit χ1/4

tc (a) →
χ1/4(a). Following [78], as the mngb(a) we used the state
with the taste structure γiγμ, which mass is close to the root
mean square of all other taste masses.

In Fig. 5 we show a simple naïve fit ∼ A+a2B of the data
for the topological susceptibility χ1/4(a) (linear hatching)
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Fig. 5 The topological susceptibilityχ1/4(a)naïve fit (linear hatching)
and the topological susceptibility NGB–corrected fit in accordance with
18 χ

1/4
tc (a) (cross hatching). The continuum extrapolation is done using

the fit ∼ A + a2B. Chiral chemical potential is zero μ5 = 0

and the NGB–corrected topological susceptibility χ
1/4
tc (a)

(cross hatching) for all pion masses
563 MeV, 762 MeV, 910 MeV and zero chiral chemical

potential μ5 = 0. In both cases the data are described by this
simple quadratic function ∼ A + a2B with χ2/ndof < 1.
Note also that the results of the naïve fit of χ1/4(a) agree with
the NGB–corrected fit χ

1/4
tc (a) in the continuum limit. The

same agreement was observed in [78]. Since both naïve and
NGB-corrected extrapolations give similar results, we expect
that our continuum extrapolation is under control, although
data at smaller lattice step would be desirable to make more
precise estimations of systematic uncertainties of the extrap-
olation.

Another two-step way to check the discretization errors
and also compare result with the ChPT is discussed in [77].
To do so, we fit the inverse topological susceptibility versus
squared pion mass m2

π for every fixed lattice spacing a and
fixed chiral chemical potential μ5 with the ChPT–motivated
ansatz

1

χ(a)
= A(a)

m2
π

+ B(a). (19)

When the fitting parameters A(a) and B(a) are obtained,
we perform the continuum extrapolation using the simple
square ansatz:

A(a) = A0 + a2A1,

B(a) = B0 + a2B1.
(20)

Both fitting stages provide a good description of the data
with χ2/ndof ≈ 1 for all lattice spacings and both A(a) and
B(a). We then interpret the function χ−1

0 = A0/m2
π + B0 as

Fig. 6 Topological susceptibility at zero chiral chemical potential for
all lattice spacings plotted as the function of squared pion massm2

π . The
orange cross-hatched region corresponds to continuum extrapolation
result in accordance with the Eq. 19. Violet left-pointing triangles and
pink triangles show the result of the naïve continuum extrapolation and
NGB–corrected extrapolation from Fig. 5 respectively

the continuum extrapolation of the inverse topological sus-
ceptibility. In Fig. 6 we show our data for all lattice spac-
ings and pion masses together with the continuum extrapo-
lation result (yellow cross-hatched region) obtained within
the two-step procedure discussed in [77]. We also plot violet
left-pointing triangles and pink triangles that the result of the
naïve continuum extrapolation and NGB–corrected extrapo-
lation from Fig. 5 respectively. The pictures for μ5 > 0 look
the same and thus we do not show them here.

Note that the results of all three extrapolation procedures
(naïve, NGB-corrected and two-step) are in agreement with
each other. Finally, the ChPT states that A0 = 4/ f 2

π . The
extracted from two-step extrapolation value of the pion decay
constant is fπ = 92(9)MeV, which agrees with the physical
f phπ ≈ 93 MeV. These results suggest that continuum extrap-
olation employed in this paper is under control, although sim-
ulations at smaller lattice step a are required to make more
precise estimations of systematic uncertainty.

As the final result for topological susceptibility we take
the values obtained by NGB–corrected procedure. We con-
sider the difference between the NGB–corrected and two-
step methods as an estimation of systematic uncertainty
of the extrapolation. These results are presented in Fig. 2,
where both statistical and systemic uncertainties are taken
into account in the errorbars.
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