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Abstract

The rheological nonlinear model of ice surface softening during friction is
developed. Analytical and numerical schemes describing stick-slip frictional
oscillations for three boundary relations between the shear strain, stress,
and temperature relaxation times are built. The phase portraits and time
dependencies of friction force are calculated. The random force (additive
uncorrelated noise) effect on found damped oscillation mode is revealed. Tt
is shown that white noise influence leads to an undamped oscillation mode
corresponding to a periodic intermittent (stick-slip) regime of friction that
is basically responsible for destruction of rubbing surfaces. The most pro-
nounced such oscillatory behavior occurs if relaxation time of the temperature
is much longer that its value for shear strain and stress.
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1. Introduction

The description of stick-slip mode of ice friction is widely approved as
a result of transitions between two dynamic states during the stationary
sliding due to presence of rapidly fluctuating (in space and time) domains
of crystalline ice and liquid-like ice [1, 12, 13,4, 15, 6, [7, &, 9, 110, [11, 12]. The
study of this mode has the fundamental significance for tribology, and also it
can be used for prediction of friction reducing or increasing and liquidation
of the negative influence of the interrupted mode of ice friction.

During ice friction three ranges of sliding speeds are distinguished, which
are determined by such processes |1, 19, [10, [13]. The expression and estima-
tion were obtained for low velocity at which the frictional energy dissipation
initiates diminutive heating of the ice, and its melting does not take place.
The slow logarithmic increase in the static rubbing occurs with the time of
steady-state contact owing to, particularly, a slow ascent of the contact area.
Besides, a logarithmic growth of the kinetic friction force takes place as a
result of thermally activated creep [9]. The expression and estimation were
found for high speed at which a thin continuous water film is generated on
the sliding boundary owing to melting of ice conditioned by the frictional
heat. The rubbing force is fixed by viscosity and thickness of water film,
which are defined by the joint effect of ice surface melting and squeezing-out
of formed water [13]. According to the B. Persson’s theory of contact me-
chanics [1, [13], in the intermediate speed interval frictional heating changes

friction due to thermal and shear premelting of the surface or the formation



of a heterogeneous thin surface layer. Based on one of these assumptions,
it is possible to explain the variation of ice friction with growth of motion
speed before its value, at which a thin homogeneous water film appears on
the surface.

Some nonlinear models of boundary friction under conditions far from
thermodynamic equilibrium have been developed [14, [15, [16]. These models
allowed us to describe self-organization of different low-dimensional systems
[17, [18]. At the same time, these methods were not applied to ice friction.
Therefore, we developed the theory that allowed us to study the ice softening
taking into account additive noncorrelated fluctuations of the shear strain
and stress, and the temperature usually observed in reality |10, [11, [12]. We
constructed the phase diagrams with different modes of friction showing that
noise leads to the complication of ice premelting in the usual and self-similar
modes.

Experimental data and calculations [1, 12,13, 4, 5, 16, |7, I8, 19, 110, 11, [12]
have shown that intermittent friction can be a stochastic regime in which
the static and kinetic friction forces change randomly over time. However,
stick-slip mode is also periodic in nature |2, 13, |7, 8]. The investigated in
this paper stochastic model, which describes the oscillatory softening of ice
surface during friction, will help to clarify the causes of this mode and its
peculiarities.

The rheological model suggested in [10, [11, [12] for representation of ice

friction is based on a system of dimensionless equations:

7.6 = —€ + 0, (1)

1,0 = —0 + g(T — 1)e, (2)
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T = (T, = T) — o, (3)

where ¢ is the shear component of strains which appear in the ice surface
layer, o is the shear component of stresses, and T is the ice surface tem-
perature, 7., are relaxation times of corresponding quantities. Here, the
constant g = Go/G. < 1 is introduced, which is the ratio of the typical value
G of shear modulus of ice to its relaxed value G, and T, is the thermostat
temperature (temperature far away from rubbing surfaces). It was revealed
that zero stationary strains g meet the usual crystalline ice; at ¢ # 0 the
ice softens.

In a steady state all derivatives in Eqs. (I)—(3) equal zero and the pa-
rameters of the ice stay constant with time. Analysis of the equations set
shows that if background temperature 7, of rubbing blocks does not exceed
the critical value

To=1+g" (4)

shear strains take on stationary magnitude g = 0, while for T, > Ty, the

value
co=[T.—(1+47)]", (5)

meeting the premelting mode of friction, is realized.

According to proposed approach the softened ice film represents a strongly
viscous liquid that can behave itself similar to the solid: has a high effective
viscosity and still exhibits a yield stress [1, 4, [13]. The crystalline ice state
corresponds to the shear strain ¢ = 0 because the Kelvin-Voigt equation
(@), containing the viscous stress, falls out of consideration. Maxwell-type

equation (2) reduces to the Debye law describing the rapid relaxation of the



shear stress during the microscopic time 7, = b/c ~ 107'2 s, where b ~ 1 nm
is the lattice constant or the intermolecular distance and ¢ ~ 10 m/s is the
sound velocity [7, 8, 12]. Correspondingly the heat conductivity equation (3]
assumes the form of simplest expression for temperature relaxation that does
not contain the terms describing the dissipative heating and the mechanic-
and-caloric effect inherent in a viscous liquid. Basic equations (I)—(3]) specify
the above characteristics of the ice softened state at € # 0. It is supposed
that the frictional force decreases with the temperature growth owing to
the weakening of hydrogen couplings between ice molecules. Moreover, the
rubbing force descents with velocity increase at the contact v = [de/0t,
because friction heat is generated and, therefore, a softened layer thickness [
grows |1, 4, 13, 12].

The kinetics of setting the stationary state is strongly defined by the ratio
of relaxation times |14, [15,19]. Therefore the effect of different limiting ratios

of these times will be examined further.

2. Periodic intermittent mode

2.1. The case 77 < To, Ty

Setting 7T ~ 0 in Eq. @), we express T from this equation and arrive
at the two-parameter system (Il), (2) plugging 7" into Eq. (2)). Then, two
resultant first-order differential equations in strain € and stress ¢ can be
reduced to a second-order equation in terms of €. To this end, we should
express o in ¢ from Eq. () and take the time derivative of this relationship.
Plugging these dependencies o(e,€) and (¢, &) into Eq. (), we arrive at

the sought equation. If time is measured in the units of 7., this equation can



be written in the form

1474 ge? .

- 6+§[1+gé2—g(Te—1)} = &(1), (6)

where 7 = 7, /7.. In Eq. (@) the random force £(¢) is introduced additionally

whose moments are defined by

(G(t) =0, (&(1)§(t) = 2Dd;;0(t —1'), (7)

where D acts as the intensity of Langevin source, d;; is Kronecker delta
symbol and §(t) stands for Dirac delta function. The reason for consideration
of additive noise is the description of stick-slip friction mode by the simplest
manner. The introduction of fluctuations in previous studies |10, [11] has
allowed us to obtain the phase diagrams.

The canonical form of Eq. (@) is as follows
€+ 20 + wie = £(t), (8)

where damping constant a and natural frequency wy of oscillations are strain
dependent. The constant value of strains (¢ = 0) is realized in the steady
state (D = 0), therefore Eq. (B can be obtained by setting the last term
in the left-hand side of Eq. (@) to be equal to zero. The damping constant
near the stationary point gy can easily be derived from Eq. ([@). The value
(B) when substituted into Eq. (@) yields relationship whose comparison with
Eq. ([8) gives sought damping constant:

o =051+gm (T, —1)]. (9)

In order to specify the character of oscillatory mode, we ought to determine

wo and frequency of damped oscillations w = (/wd — 2. An example of
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analysis of similar set of equations by phase plane method can be found in
[19] and is planed in the future work.
For numerical solving Eq. (8), we can introduce the designation = = ¢

that transforms the single second-order equation () into two first-order ones

e = ux,

& = —20r —wie+E(1). (10)

The explicit expressions for av and wy are got from comparison of Eqs. (@) and
([®). The equations system in the form of (I0) is typical for study by phase
plane method [19, 20, 21, 22]. The Euler method and following iterative

procedure are used further for integration [10, [11, 14, [15]:

Eg = €1+I1At,

Ty = a1+ (—2am; — wie)) At + /AW, (11)

To simulate stochastic force W,,, we employ the Box-Muller generator [23],

W, =V2Dy/—2Inr cos(2mry), r; € (0,1], (12)

where 7 5 are pseudorandom numbers with uniform distributions.

The phase portrait in Fig. [l displays the result of numerical solution
of Eq. (@) based on (IIl) and (IZ). The dotted isoclinal on which ¢ = 0
indicates the points at which the phase trajectories have a vertical tangent.
The isoclinal line represents the abscissa axis within considered coordinates.
The dot-and-dash isoclinal (¢ = 0) demonstrates the points at which the
phase trajectories have a horizontal tangent. The relationship to build this

isoclinal £(¢) is obtained from Eq. (@l). It is apparent that phase portrait is



marked by the presence of three singular points: saddle point I at the origin,
that is an unstable one since it meets the maximum of the synergetic potential
[19, 24], and two points (nodes) S and S’ which are symmetrically situated
relatively to e = 0. In the vicinity of the latter points a tendency towards
an oscillatory mode manifests itself during establishment of steady state g.
However, this tendency is not realized in full due to the large value of the
damping constant. For the given relationship between the relaxation times,
the regime of rapidly damped oscillations is observed under both conditions
7. € 7, and 7. > 7, [19]. Tt is worth noting that positive and negative
values of strains meet the movement of the top rubbing block in opposite
directions. Particularly, according to the phase portrait the motion is possible
in two directions for the positive (negative) initial values of ¢ = ¢/G. and
negative (positive) shear rate € = o /n.. In the latter formula o is the viscous
(nonequilibrium) shear stress and 7). is the effective shear viscosity that is
characteristic of ultrathin “liquid” films confined between solid surfaces |14,
15, 116, 24].

Figure 2k depicts the time dependencies of friction force I’ corresponding
to the trajectories in Fig. [[h. Figures Bh—c and Bh—c are built using approx-
imation F(t) = AG.e(t) as stated in Refs. [10, [11] (A is the contact area of
rubbing surfaces). The total strain e involves the elastic (equilibrium) com-
ponent €., and the viscous (nonequilibrium) component &, which accordingly
give contributions in the static and kinetic components of total friction force
F. The dependencies in Fig. P illustrate an aperiodic transient stick-slip
mode, i.e., during characteristical slip time force F' relaxes to establishment

of sliding at a constant shear rate (¢ = const).



Figure 1: Phase portraits with parameters g = 0.8 and T, = 30 for noise intensity D = 0,
which are solution of (a) Eq. (@) for 7 = 7,/7. = 20; (b) Eq. (@3)) for 7 = 7 /7. = 100;
and (c) Eq. (@) for 7 = 70 /7, = 100



Figure[Bh represents the solving the same equation as in the case of Fig. Zh
but with low noise intensity D # 0. Therefore, the friction force fluctuates
with small amplitude that meets the sliding mode at approximately constant
velocity. The calculations are displayed from time ¢ = 1000 because after
this the stationary rubbing mode sets in.

The analysis of intensity S(w) of the signal in Fig. Bh indicates that the
peaks are absent (figure [dh). Consequently, the time dependence F'(t) is not
characterized by the regular (periodic) components. It is apparent that this
dependence on a double logarithmic scale indicates a downward trend with
increase of the fluctuations frequency of the structural components in the
ice. This implies that fluctuations have a high energy at low frequencies
w. Thus, it is obvious that the spectrum (power) of fluctuations of the
evolutionary variables is inversely proportional to the frequency. Therefore,
there are different time correlations in the system. This behavior is opposite
to the properties of white noise, because in it the spectral density of the
random signal assumes a constant value S(w) = const [25]. The spectrum
decrease is due to the fact that in the initial equation (@) nonlinear terms,
reflecting interactions of nonequilibrium state parameters (strains, stresses
and temperature), serve as a filter that does not transmit high frequencies
[10, [11, 26]. As a result, a transition occurs from white noise £(¢), inherent
in most physical systems, to a colored one with a nonzero correlation time.

It is commonly recognized that many physical, biological and economic
systems, which experience phase transitions, have stochastic (fluctuational)
souse with power spectrum that is inversely proportional to the frequency. It

is named 1/w, flicker or less known as fractional (fractal) noise [27, 128, 29].
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Figure 2: Time series of friction force F(t) corresponding to Fig. [l
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In particular, similar activity takes place in many dynamical systems that
undergo “white” noise and nonequilibrium transitions [27, 30, 31, 32]. More-
over, such pattern is observed during the various modes of plastic deformation

33, 134, 135, 36].
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Figure 3: Time series of friction force F'(¢) corresponding to Figs.[Iland Rl for noise intensity

D=5-10"5

The estimated values of relaxation slip time (Fig. 2h) and frequency of
friction force fluctuations (Fig. Bh) allow to conclude that such behavior
corresponds to the experimental dependencies of friction on displacement
displayed in Fig. 3b in Ref. [2] and in Fig. 4c in Ref. [7]. Besides, stochas-
tic and periodic F'(t) are realized in experiments on rubbing of a polymer
(poly(methyl methacrylate) PMMA), rubber and steel on ice [3, 4, 5] as well

as on polycrystalline freshwater and saline ice over itself [2, 16, [7, |8, 9].
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2.2. The case 7, < T., Tr

As we did earlier, setting 7,6 =~ 0 in the initial system we arrive at the

equation

é+l”geQ—§]é+§[1—g(Te—1+52)]zg(t), (13)

T €
where the time is measured in the units of 7. and the ratio 7 = 77 /7. is

introduced. Equation (I3)) fixes oscillations with the damping constant
a=0.597"1T, - 1). (14)

The phase portrait, that has been got by solving Eq. (I3)), is depicted in
figure [Ib. It is apparent that the same singular points are realized, the only
difference lies in transformation of node points S and S’ into stable focuses
and more prolonged damping mode is observed. The numbers designate
the phase trajectories in the figure. Contrary to the previous case the two
isoclines appear, demonstrated by the dot-and-dash curves, owing to the
dependence of damping constant on ¢ in Eq. (I3). The two-valued expression
£(e) for the isoclines £ = 0 is obtained as a solution of a quadratic equation.

The rubbing force time dependencies (Fig.[2b) have long sections on which
F =~ 0 meeting the slow motion of friction surfaces. This implies that in
the phase portrait the evolution of system occurs in the vicinity of origin
(e, =~ 0) with a low rate of strain changing. However, a nonzero value of
friction force appears always at sliding onset. The movement in two directions
is not observed due to higher maximum of the effective potential at the
coordinates origin.

The F(t) random series (Fig. Bb) describe a stationary mode with pa-

rameters that are not time dependent. To check the apparent periodicity
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of this dependence the Fourier analysis is necessary. The S(w) spectrum in
Fig. @b displays the power weakening of signal with its frequency growth.
But it is notable that at w ~ 0.1 a maximum is realized showing the avail-
ability of a periodic component in F(t). Consequently, friction force changes
periodically in accordance with Fig. Bb. Such behavior meets the oscilla-
tory transitions between the crystalline and premelted ice resulting to the
intermittent (stick-slip) mode.

Above the classification of the different states of ice is based on the fol-
lowing property. When shear strain ¢ = 0 the ice is not premelted. The
case € # 0 corresponds to its softening at ascent of thermostat temperature
T. > Ty |10, 11, 12]. Expose this statement in more details. Let us assume
that strains are initially small, that meets the crystalline ice as earlier. Begin-
ning to move surfaces, we increase the values of € according to any ascending
section on the dependence depicted in Fig. Bb. At exceeding by strains the
critical value softening occurs, then elastic component e, relaxes, and the
total strains also diminish in accordance with the falling section of the curve.
When due to relaxation the strains reach the values too low to preserve ice
in the premelted state, the ice transforms in crystal, and the process repro-
duces itself. Thus, premelting takes place at large strains similar to above
stated. It is worth noting that the scenario exposed in this subsection differs
from that construed in previous subsection. Here, periodic transformations
are observed between the crystalline and softened forms of ice, and stochas-
tic variations of strains in them represent fluctuations that do not result to
premelting/solidifing. Most probably that F(¢) in Fig. Bb corresponds to

experiments with freshwater, granular ice and columnar, saline ice |6] which
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have disordered grain structure and are not characterized by strictly periodic
friction force time series. Consequently, noises are laid on oscillations and
the amplitude of the stick-slip transitions is not constant now. Besides, the
fluctuations may result in instability of a focuses, i.e., continuous growth of
the amplitude of friction force oscillations that resembles resonance. From
estimations of relaxation time (Fig. 2b) and frequency as well as presence
of periodicity of friction force oscillations (Fig. Bb) we can assume that such
pattern meets the experimental data depicted in Fig. 3c in Ref. [2] and in

Fig. 4b in Ref. [7].

2.8. The case 7. < T,,Tr
By analogy with previous cases, let 7. ~ 0; this yields equation
1 € €
E4+ |- —Z|é+ = [1—g(T,—1-¢&%)| =£(), 15
R )] =) (15)
where time is measured in the units of 7, and 7 = 71 /7,. Now, the damping

constant is fixed by the value
a=0.57"", (16)

which, contrary to the previous subsections, depends only on factor 7 and
descents with its increasing. From this it follows that the duration of oscil-
lations ascents with growth of 7, i.e., a larger number of oscillations occurs
around the focus in Fig. [k before the steady state sets in comparison to the
above examined cases. This is confirmed by figure 2k demonstrating long-
term oscillatory mode with negligibly low damping even during ¢ = 800.

Figure Bk displays the driving fluctuational effect on the time dependence of
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friction force that becomes more flat and regular comparatively with Fig. Bb
(it is worth noting that noise intensity D is constant for all Figs. Ba—c).

Let us use the discrete Fourier transform for spectral analysis of friction
force time series in Fig. Bt meeting the two phase trajectories in Fig. [dk.
The corresponding spectrums (Fig. @) have a highest maximums at w ~ 0.1
which are narrower than in Fig. @b. Other maximums are more blurred,
therefore the selected (significant) frequencies are equal to w ~ 0.1. At
this frequency the 42 full oscillations are realized in the F(¢) dependence
in time interval At = 400. Thus, a more stable oscillatory intermittent
mode with a larger amplitude establishes in this case of relationship between
Te, To, Tr. Namely, the conditions 7. < 7, < 7 expedite the appearance of
periodic stick-slip ice friction. It is worth noting that for chosen parameters
(9 = 0.8 and T, = 30), the steady-state value of dimensionless friction force
Fy ~ 5.2678 (AG. is its measure unit) is reached with time in all examined
cases. It is apparent from Fig. 3] that fluctuations may result to nonessen-
tial stochasticity in the vicinity of the stationary value Fy (see Fig. Bh) or
may influence on the behavior crucially, violating the rubbing mode (see
Figs. Bb,c). From estimation of relaxation slip time (Fig. 2c) and form of
rubbing force fluctuations (Fig. Bk) it follows that pattern examined in this
subsection meets the experimental results depicted in Fig. 3d in Ref. |2] and

in Fig. 4a in Ref. [7].

3. Conclusions

The above investigation shows that the viscoelastic model ([I)—(3) with

account of noise makes it possible to represent the main features of a stick-

17



slip mode of ice surface softening at friction. The kinetic pattern of these
transitions is represented by the phase portraits shown in Fig. [[] and the
time dependencies of friction force (Figs. [ and B]). The type of singular
point S corresponding to the softened ice depends on the relationship be-
tween relaxation times 7., 7,, 71 of shear strain, stress, and temperature of
ice surface. The above analysis shows that at absence of noise D = 0 in the
case 77 < T, T, the point S is an attractive node, and after a short time
interval the system reaches the stationary state (premelted ice). While at
noise intensity D # 0 intermittent mode represents diminutive fluctuations
near steady-state value of friction force, probably, due to the rapid thermally
activated processes. When the relationships between the relaxation times
correspond to modes 7, < 7.,7r and 7. < T,,7r at D = 0, the system
undergoes more prolonged damped oscillations, i.e., point S transforms into
focus. In the latter case noise leads to stick-slip regime with most expressed
periodic component of rubbing force. A characteristic feature of this mode

is that the relaxation time of temperature 7 is the greatest of the three.
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