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Abstract

The rheological nonlinear model of ice surface softening during friction is

developed. Analytical and numerical schemes describing stick-slip frictional

oscillations for three boundary relations between the shear strain, stress,

and temperature relaxation times are built. The phase portraits and time

dependencies of friction force are calculated. The random force (additive

uncorrelated noise) effect on found damped oscillation mode is revealed. It

is shown that white noise influence leads to an undamped oscillation mode

corresponding to a periodic intermittent (stick-slip) regime of friction that

is basically responsible for destruction of rubbing surfaces. The most pro-

nounced such oscillatory behavior occurs if relaxation time of the temperature

is much longer that its value for shear strain and stress.
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1. Introduction

The description of stick-slip mode of ice friction is widely approved as

a result of transitions between two dynamic states during the stationary

sliding due to presence of rapidly fluctuating (in space and time) domains

of crystalline ice and liquid-like ice [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The

study of this mode has the fundamental significance for tribology, and also it

can be used for prediction of friction reducing or increasing and liquidation

of the negative influence of the interrupted mode of ice friction.

During ice friction three ranges of sliding speeds are distinguished, which

are determined by such processes [1, 9, 10, 13]. The expression and estima-

tion were obtained for low velocity at which the frictional energy dissipation

initiates diminutive heating of the ice, and its melting does not take place.

The slow logarithmic increase in the static rubbing occurs with the time of

steady-state contact owing to, particularly, a slow ascent of the contact area.

Besides, a logarithmic growth of the kinetic friction force takes place as a

result of thermally activated creep [9]. The expression and estimation were

found for high speed at which a thin continuous water film is generated on

the sliding boundary owing to melting of ice conditioned by the frictional

heat. The rubbing force is fixed by viscosity and thickness of water film,

which are defined by the joint effect of ice surface melting and squeezing-out

of formed water [13]. According to the B. Persson’s theory of contact me-

chanics [1, 13], in the intermediate speed interval frictional heating changes

friction due to thermal and shear premelting of the surface or the formation
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of a heterogeneous thin surface layer. Based on one of these assumptions,

it is possible to explain the variation of ice friction with growth of motion

speed before its value, at which a thin homogeneous water film appears on

the surface.

Some nonlinear models of boundary friction under conditions far from

thermodynamic equilibrium have been developed [14, 15, 16]. These models

allowed us to describe self-organization of different low-dimensional systems

[17, 18]. At the same time, these methods were not applied to ice friction.

Therefore, we developed the theory that allowed us to study the ice softening

taking into account additive noncorrelated fluctuations of the shear strain

and stress, and the temperature usually observed in reality [10, 11, 12]. We

constructed the phase diagrams with different modes of friction showing that

noise leads to the complication of ice premelting in the usual and self-similar

modes.

Experimental data and calculations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

have shown that intermittent friction can be a stochastic regime in which

the static and kinetic friction forces change randomly over time. However,

stick-slip mode is also periodic in nature [2, 3, 7, 8]. The investigated in

this paper stochastic model, which describes the oscillatory softening of ice

surface during friction, will help to clarify the causes of this mode and its

peculiarities.

The rheological model suggested in [10, 11, 12] for representation of ice

friction is based on a system of dimensionless equations:

τεε̇ = −ε + σ, (1)

τσσ̇ = −σ + g(T − 1)ε, (2)
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τT Ṫ = (Te − T )− σε, (3)

where ε is the shear component of strains which appear in the ice surface

layer, σ is the shear component of stresses, and T is the ice surface tem-

perature, τε,σ,T are relaxation times of corresponding quantities. Here, the

constant g ≡ G0/Gε < 1 is introduced, which is the ratio of the typical value

G0 of shear modulus of ice to its relaxed value Gε, and Te is the thermostat

temperature (temperature far away from rubbing surfaces). It was revealed

that zero stationary strains ε0 meet the usual crystalline ice; at ε0 �= 0 the

ice softens.

In a steady state all derivatives in Eqs. (1)–(3) equal zero and the pa-

rameters of the ice stay constant with time. Analysis of the equations set

shows that if background temperature Te of rubbing blocks does not exceed

the critical value

Tc0 = 1 + g−1 (4)

shear strains take on stationary magnitude ε0 = 0, while for Te > Tc0, the

value

ε0 =
[
Te −

(
1 + g−1

)]1/2
, (5)

meeting the premelting mode of friction, is realized.

According to proposed approach the softened ice film represents a strongly

viscous liquid that can behave itself similar to the solid: has a high effective

viscosity and still exhibits a yield stress [1, 4, 13]. The crystalline ice state

corresponds to the shear strain ε = 0 because the Kelvin-Voigt equation

(1), containing the viscous stress, falls out of consideration. Maxwell-type

equation (2) reduces to the Debye law describing the rapid relaxation of the
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shear stress during the microscopic time τσ = b/c ∼ 10−12 s, where b ∼ 1 nm

is the lattice constant or the intermolecular distance and c ∼ 103 m/s is the

sound velocity [7, 8, 12]. Correspondingly the heat conductivity equation (3)

assumes the form of simplest expression for temperature relaxation that does

not contain the terms describing the dissipative heating and the mechanic-

and-caloric effect inherent in a viscous liquid. Basic equations (1)–(3) specify

the above characteristics of the ice softened state at ε �= 0. It is supposed

that the frictional force decreases with the temperature growth owing to

the weakening of hydrogen couplings between ice molecules. Moreover, the

rubbing force descents with velocity increase at the contact v = l∂ε/∂t,

because friction heat is generated and, therefore, a softened layer thickness l

grows [1, 4, 13, 12].

The kinetics of setting the stationary state is strongly defined by the ratio

of relaxation times [14, 15, 19]. Therefore the effect of different limiting ratios

of these times will be examined further.

2. Periodic intermittent mode

2.1. The case τT � τε, τσ

Setting τT Ṫ ≈ 0 in Eq. (3), we express T from this equation and arrive

at the two-parameter system (1), (2) plugging T into Eq. (2). Then, two

resultant first-order differential equations in strain ε and stress σ can be

reduced to a second-order equation in terms of ε. To this end, we should

express σ in ε from Eq. (1) and take the time derivative of this relationship.

Plugging these dependencies σ(ε, ε̇) and σ̇(ε̇, ε̈) into Eq. (2), we arrive at

the sought equation. If time is measured in the units of τε, this equation can
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be written in the form

ε̈+
1 + τ + gε2

τ
ε̇+

ε

τ

[
1 + gε2 − g(Te − 1)

]
= ξ(t), (6)

where τ = τσ/τε. In Eq. (6) the random force ξ(t) is introduced additionally

whose moments are defined by

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′), (7)

where D acts as the intensity of Langevin source, δij is Kronecker delta

symbol and δ(t) stands for Dirac delta function. The reason for consideration

of additive noise is the description of stick-slip friction mode by the simplest

manner. The introduction of fluctuations in previous studies [10, 11] has

allowed us to obtain the phase diagrams.

The canonical form of Eq. (6) is as follows

ε̈+ 2αε̇+ ω2
0ε = ξ(t), (8)

where damping constant α and natural frequency ω0 of oscillations are strain

dependent. The constant value of strains (ε̇ = 0) is realized in the steady

state (D = 0), therefore Eq. (5) can be obtained by setting the last term

in the left-hand side of Eq. (6) to be equal to zero. The damping constant

near the stationary point ε0 can easily be derived from Eq. (6). The value

(5) when substituted into Eq. (6) yields relationship whose comparison with

Eq. (8) gives sought damping constant:

α = 0.5
[
1 + gτ−1(Te − 1)

]
. (9)

In order to specify the character of oscillatory mode, we ought to determine

ω0 and frequency of damped oscillations ω =
√
ω2
0 − α2. An example of
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analysis of similar set of equations by phase plane method can be found in

[19] and is planed in the future work.

For numerical solving Eq. (8), we can introduce the designation x = ε̇

that transforms the single second-order equation (8) into two first-order ones

ε̇ = x,

ẋ = −2αx− ω2
0ε+ ξ(t). (10)

The explicit expressions for α and ω0 are got from comparison of Eqs. (6) and

(8). The equations system in the form of (10) is typical for study by phase

plane method [19, 20, 21, 22]. The Euler method and following iterative

procedure are used further for integration [10, 11, 14, 15]:

ε2 = ε1 + x1	t,

x2 = x1 + (−2αx1 − ω2
0ε1)	t+

√
	tWn. (11)

To simulate stochastic force Wn, we employ the Box-Muller generator [23],

Wn =
√
2D

√
−2 ln r1 cos(2πr2), ri ∈ (0, 1], (12)

where r1,2 are pseudorandom numbers with uniform distributions.

The phase portrait in Fig. 1a displays the result of numerical solution

of Eq. (6) based on (11) and (12). The dotted isoclinal on which ε̇ = 0

indicates the points at which the phase trajectories have a vertical tangent.

The isoclinal line represents the abscissa axis within considered coordinates.

The dot-and-dash isoclinal (ε̈ = 0) demonstrates the points at which the

phase trajectories have a horizontal tangent. The relationship to build this

isoclinal ε̇(ε) is obtained from Eq. (6). It is apparent that phase portrait is
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marked by the presence of three singular points: saddle point I at the origin,

that is an unstable one since it meets the maximum of the synergetic potential

[19, 24], and two points (nodes) S and S ′ which are symmetrically situated

relatively to ε = 0. In the vicinity of the latter points a tendency towards

an oscillatory mode manifests itself during establishment of steady state ε0.

However, this tendency is not realized in full due to the large value of the

damping constant. For the given relationship between the relaxation times,

the regime of rapidly damped oscillations is observed under both conditions

τε � τσ and τε � τσ [19]. It is worth noting that positive and negative

values of strains meet the movement of the top rubbing block in opposite

directions. Particularly, according to the phase portrait the motion is possible

in two directions for the positive (negative) initial values of ε = σ/Gε and

negative (positive) shear rate ε̇ = σ/ηε. In the latter formula σ is the viscous

(nonequilibrium) shear stress and ηε is the effective shear viscosity that is

characteristic of ultrathin “liquid” films confined between solid surfaces [14,

15, 16, 24].

Figure 2a depicts the time dependencies of friction force F corresponding

to the trajectories in Fig. 1a. Figures 2a–c and 3a–c are built using approx-

imation F (t) = AGεε(t) as stated in Refs. [10, 11] (A is the contact area of

rubbing surfaces). The total strain ε involves the elastic (equilibrium) com-

ponent εel and the viscous (nonequilibrium) component εv which accordingly

give contributions in the static and kinetic components of total friction force

F . The dependencies in Fig. 2a illustrate an aperiodic transient stick-slip

mode, i.e., during characteristical slip time force F relaxes to establishment

of sliding at a constant shear rate (ε̇ = const).
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Figure 1: Phase portraits with parameters g = 0.8 and Te = 30 for noise intensity D = 0,

which are solution of (a) Eq. (6) for τ = τσ/τε = 20; (b) Eq. (13) for τ = τT /τε = 100;

and (c) Eq. (15) for τ = τT /τσ = 100
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Figure 3a represents the solving the same equation as in the case of Fig. 2a

but with low noise intensity D �= 0. Therefore, the friction force fluctuates

with small amplitude that meets the sliding mode at approximately constant

velocity. The calculations are displayed from time t = 1000 because after

this the stationary rubbing mode sets in.

The analysis of intensity S(ω) of the signal in Fig. 3a indicates that the

peaks are absent (figure 4a). Consequently, the time dependence F (t) is not

characterized by the regular (periodic) components. It is apparent that this

dependence on a double logarithmic scale indicates a downward trend with

increase of the fluctuations frequency of the structural components in the

ice. This implies that fluctuations have a high energy at low frequencies

ω. Thus, it is obvious that the spectrum (power) of fluctuations of the

evolutionary variables is inversely proportional to the frequency. Therefore,

there are different time correlations in the system. This behavior is opposite

to the properties of white noise, because in it the spectral density of the

random signal assumes a constant value S(ω) = const [25]. The spectrum

decrease is due to the fact that in the initial equation (6) nonlinear terms,

reflecting interactions of nonequilibrium state parameters (strains, stresses

and temperature), serve as a filter that does not transmit high frequencies

[10, 11, 26]. As a result, a transition occurs from white noise ξ(t), inherent

in most physical systems, to a colored one with a nonzero correlation time.

It is commonly recognized that many physical, biological and economic

systems, which experience phase transitions, have stochastic (fluctuational)

souse with power spectrum that is inversely proportional to the frequency. It

is named 1/ω, flicker or less known as fractional (fractal) noise [27, 28, 29].

10



0 2 4 6 8 10

−6

−2

0

2

6

1’

F a

1

t 0 10 20 30 40 50

−15

−5

0

5

15
F b

1

1’

2

2’

t

0 100 200 300 400 500 600

−15

−5

0

5

15
F c

1

1’

t

Figure 2: Time series of friction force F (t) corresponding to Fig. 1
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In particular, similar activity takes place in many dynamical systems that

undergo “white” noise and nonequilibrium transitions [27, 30, 31, 32]. More-

over, such pattern is observed during the various modes of plastic deformation

[33, 34, 35, 36].
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Figure 3: Time series of friction force F (t) corresponding to Figs. 1 and 2 for noise intensity

D = 5 · 10−5

The estimated values of relaxation slip time (Fig. 2a) and frequency of

friction force fluctuations (Fig. 3a) allow to conclude that such behavior

corresponds to the experimental dependencies of friction on displacement

displayed in Fig. 3b in Ref. [2] and in Fig. 4c in Ref. [7]. Besides, stochas-

tic and periodic F (t) are realized in experiments on rubbing of a polymer

(poly(methyl methacrylate) PMMA), rubber and steel on ice [3, 4, 5] as well

as on polycrystalline freshwater and saline ice over itself [2, 6, 7, 8, 9].
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Figure 4: Spectral density of the signal S(ω) corresponding to Fig. 3
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2.2. The case τσ � τε, τT

As we did earlier, setting τσσ̇ ≈ 0 in the initial system we arrive at the

equation

ε̈+

[
1 + gε2

τ
− ε̇

ε

]
ε̇+

ε

τ

[
1− g(Te − 1 + ε2)

]
= ξ(t), (13)

where the time is measured in the units of τε and the ratio τ = τT/τε is

introduced. Equation (13) fixes oscillations with the damping constant

α = 0.5gτ−1(Te − 1). (14)

The phase portrait, that has been got by solving Eq. (13), is depicted in

figure 1b. It is apparent that the same singular points are realized, the only

difference lies in transformation of node points S and S ′ into stable focuses

and more prolonged damping mode is observed. The numbers designate

the phase trajectories in the figure. Contrary to the previous case the two

isoclines appear, demonstrated by the dot-and-dash curves, owing to the

dependence of damping constant on ε̇ in Eq. (13). The two-valued expression

ε̇(ε) for the isoclines ε̈ = 0 is obtained as a solution of a quadratic equation.

The rubbing force time dependencies (Fig. 2b) have long sections on which

F ≈ 0 meeting the slow motion of friction surfaces. This implies that in

the phase portrait the evolution of system occurs in the vicinity of origin

(ε, ε̇ ≈ 0) with a low rate of strain changing. However, a nonzero value of

friction force appears always at sliding onset. The movement in two directions

is not observed due to higher maximum of the effective potential at the

coordinates origin.

The F (t) random series (Fig. 3b) describe a stationary mode with pa-

rameters that are not time dependent. To check the apparent periodicity
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of this dependence the Fourier analysis is necessary. The S(ω) spectrum in

Fig. 4b displays the power weakening of signal with its frequency growth.

But it is notable that at ω ≈ 0.1 a maximum is realized showing the avail-

ability of a periodic component in F (t). Consequently, friction force changes

periodically in accordance with Fig. 3b. Such behavior meets the oscilla-

tory transitions between the crystalline and premelted ice resulting to the

intermittent (stick-slip) mode.

Above the classification of the different states of ice is based on the fol-

lowing property. When shear strain ε = 0 the ice is not premelted. The

case ε �= 0 corresponds to its softening at ascent of thermostat temperature

Te > Tc0 [10, 11, 12]. Expose this statement in more details. Let us assume

that strains are initially small, that meets the crystalline ice as earlier. Begin-

ning to move surfaces, we increase the values of ε according to any ascending

section on the dependence depicted in Fig. 3b. At exceeding by strains the

critical value softening occurs, then elastic component εel relaxes, and the

total strains also diminish in accordance with the falling section of the curve.

When due to relaxation the strains reach the values too low to preserve ice

in the premelted state, the ice transforms in crystal, and the process repro-

duces itself. Thus, premelting takes place at large strains similar to above

stated. It is worth noting that the scenario exposed in this subsection differs

from that construed in previous subsection. Here, periodic transformations

are observed between the crystalline and softened forms of ice, and stochas-

tic variations of strains in them represent fluctuations that do not result to

premelting/solidifing. Most probably that F (t) in Fig. 3b corresponds to

experiments with freshwater, granular ice and columnar, saline ice [6] which
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have disordered grain structure and are not characterized by strictly periodic

friction force time series. Consequently, noises are laid on oscillations and

the amplitude of the stick-slip transitions is not constant now. Besides, the

fluctuations may result in instability of a focuses, i.e., continuous growth of

the amplitude of friction force oscillations that resembles resonance. From

estimations of relaxation time (Fig. 2b) and frequency as well as presence

of periodicity of friction force oscillations (Fig. 3b) we can assume that such

pattern meets the experimental data depicted in Fig. 3c in Ref. [2] and in

Fig. 4b in Ref. [7].

2.3. The case τε � τσ, τT

By analogy with previous cases, let τεε̇ ≈ 0; this yields equation

ε̈+
[
1

τ
− ε̇

ε

]
ε̇+

ε

τ

[
1− g(Te − 1− ε2)

]
= ξ(t), (15)

where time is measured in the units of τσ and τ = τT /τσ. Now, the damping

constant is fixed by the value

α = 0.5τ−1, (16)

which, contrary to the previous subsections, depends only on factor τ and

descents with its increasing. From this it follows that the duration of oscil-

lations ascents with growth of τ , i.e., a larger number of oscillations occurs

around the focus in Fig. 1c before the steady state sets in comparison to the

above examined cases. This is confirmed by figure 2c demonstrating long-

term oscillatory mode with negligibly low damping even during t = 800.

Figure 3c displays the driving fluctuational effect on the time dependence of
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friction force that becomes more flat and regular comparatively with Fig. 3b

(it is worth noting that noise intensity D is constant for all Figs. 3a–c).

Let us use the discrete Fourier transform for spectral analysis of friction

force time series in Fig. 3c meeting the two phase trajectories in Fig. 1c.

The corresponding spectrums (Fig. 4c) have a highest maximums at ω ≈ 0.1

which are narrower than in Fig. 4b. Other maximums are more blurred,

therefore the selected (significant) frequencies are equal to ω ≈ 0.1. At

this frequency the 42 full oscillations are realized in the F (t) dependence

in time interval 	t = 400. Thus, a more stable oscillatory intermittent

mode with a larger amplitude establishes in this case of relationship between

τε, τσ, τT . Namely, the conditions τε � τσ � τT expedite the appearance of

periodic stick-slip ice friction. It is worth noting that for chosen parameters

(g = 0.8 and Te = 30), the steady-state value of dimensionless friction force

F0 ≈ 5.2678 (AGε is its measure unit) is reached with time in all examined

cases. It is apparent from Fig. 3 that fluctuations may result to nonessen-

tial stochasticity in the vicinity of the stationary value F0 (see Fig. 3a) or

may influence on the behavior crucially, violating the rubbing mode (see

Figs. 3b,c). From estimation of relaxation slip time (Fig. 2c) and form of

rubbing force fluctuations (Fig. 3c) it follows that pattern examined in this

subsection meets the experimental results depicted in Fig. 3d in Ref. [2] and

in Fig. 4a in Ref. [7].

3. Conclusions

The above investigation shows that the viscoelastic model (1)–(3) with

account of noise makes it possible to represent the main features of a stick-
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slip mode of ice surface softening at friction. The kinetic pattern of these

transitions is represented by the phase portraits shown in Fig. 1 and the

time dependencies of friction force (Figs. 2 and 3). The type of singular

point S corresponding to the softened ice depends on the relationship be-

tween relaxation times τε, τσ, τT of shear strain, stress, and temperature of

ice surface. The above analysis shows that at absence of noise D = 0 in the

case τT � τε, τσ the point S is an attractive node, and after a short time

interval the system reaches the stationary state (premelted ice). While at

noise intensity D �= 0 intermittent mode represents diminutive fluctuations

near steady-state value of friction force, probably, due to the rapid thermally

activated processes. When the relationships between the relaxation times

correspond to modes τσ � τε, τT and τε � τσ, τT at D = 0, the system

undergoes more prolonged damped oscillations, i.e., point S transforms into

focus. In the latter case noise leads to stick-slip regime with most expressed

periodic component of rubbing force. A characteristic feature of this mode

is that the relaxation time of temperature τT is the greatest of the three.
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