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In this Letter, we introduce a novel scheme for extrapolating the equation of state of QCD to finite
chemical potential that features considerably improved convergence properties and allows us to extend its
reach to unprecedentedly high baryonic chemical potentials. We present continuum extrapolated lattice
results for the new expansion coefficients and show the thermodynamic observables up to μB=T ≤ 3.5. This
novel expansion does not suffer from the shortcomings that characterize the traditional Taylor expansion
method, such as difficulties inherent in performing such an expansion with a limited number of coefficients
and the poor signal-to-noise ratio that affects Taylor coefficients determined from lattice calculations.
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Introduction.—The phase diagram of quantum chromo-
dynamics (QCD) is an open field of investigation, which is
at the center of intense efforts from the theoretical and
experimental communities. At vanishing baryon density,
first principle results show that the transition between
confined and deconfined matter is an analytic crossover
[1]. Although at finite baryon density, lattice QCD faces a
sign problem, numerous results have been published
for moderate chemical potentials [2,3]. New techniques
that allow direct simulations at finite chemical potential
in the presence of a sign problem include Lefschetz
thimbles [4–6], the Complex Langevin equation [7–10]
or reweighting-based methods [11]. These approaches
cannot be applied to large scale QCD simulations yet.
The most straightforward method for studying QCD at

finite density is the Taylor expansion, where the leading μB
derivatives of the relevant observables are calculated [12–
15]. These derivatives were often calculated for chiral
observables, and the μB dependence of the transition
temperature was extracted [16–19]. These coefficients
can be efficiently calculated by simulating imaginary
values of the chemical potential(s), besides μB ¼ 0

[20,21]. This is motivated by the analytic crossover
at μB ¼ 0, from which the smooth behavior of the thermo-
dynamic observables as a function of μ2B follows [18,
22–27]. This is often referred to as analytical continuation.
This name suggests that, besides the computation of the
Taylor expansion coefficients, other extrapolation schemes
can be established. For example, the Padé summation was
also considered in the context of QCD thermodynamics
[28–32]. The success of this method was most visible in the
study of the QCD transition line, where continuum
extrapolated results are available for the leading μB
dependence [18,33–35] and, recently, also for the next-
to-leading coefficient [36].
The knowledge of the QCD phase diagram from lattice

simulations is currently limited to small μB, and data are
mostly available in the transition region. We have to
mention that, at high temperatures, resummed perturbation
theory has provided a quantitative description of the
chemical potential dependence of several observables
[37–39]. Dedicated lattice studies have bridged the gap
between the transition region and perturbative temperatures
and found perfect agreement [40,41].
On the experimental side, heavy-ion collisions are

mapping out the phase structure of strongly interacting
matter. The evolution of the system created in these
experiments can be described by hydrodynamic simula-
tions, which need the equation of state of QCD as an input
in the whole range of temperatures and densities covered in
the experiments. Recently, a Bayesian analysis based on a
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systematic comparison between heavy-ion data and theo-
retical predictions showed that the posterior distribution
over possible equations of states is compatible with the one
calculated on the lattice [42]. For this reason, the equation
of state at finite density is a crucial ingredient for
supporting the experimental program.
The equation of state at vanishing chemical potential has

been known, now, for several years over a broad range of
temperatures [43–45]. The first continuum extrapolated
extension to finite μB using the Taylor method in Ref. [14]
was followed by several works with the intent of extending
these results to higher μB by adding more terms in the
Taylor series [15,46,47]. Currently, even the sixth μB
derivative of the QCD pressure is available with modest
precision from lattice simulations [21,47]. Recently, similar
results were found by solving a QCD-assisted effective
theory with functional methods [48].
In this Letter, we propose a new scheme to extrapolate

the equation of state of QCD to finite density. We intend to
remedy some shortcomings of the Taylor-based equation of
state, e.g., the extrapolation through a crossover boundary,
as detailed below. We will show that this expansion
converges faster than the Taylor series at finite density,
thus, leading to an unprecedented coverage in μB and to
more precise results for the thermodynamic observables.
Motivation and methodology.—The knowledge of the

equation of state from lattice simulations commonly con-
sists of the established μB ¼ 0 result [44,45] and the Taylor
expansion coefficients of the pressure around μB ¼ 0

pðT; μBÞ
T4

¼
X

n¼0

1

ð2nÞ! χ
B
2nðT; 0Þ

�
μB
T

�
2n
; ð1Þ

where χBj are the jth derivatives of the normalized pressure

χBj ðT; μBÞ ¼
� ∂
∂μB=T

�
j pðT; μBÞ

T4
: ð2Þ

Besides diagonal coefficients, one can also define off-
diagonal correlators between different conserved charges in
QCD. Correlators between baryon number and strangeness
are defined as follows:

χBSjk ðT; μBÞ ¼
� ∂
∂μB=T

�
j
� ∂
∂μS=T

�
k pðT; μBÞ

T4
: ð3Þ

Such correlators have phenomenological relevance [49]
and they can also be used to extrapolate the equation of
state of QCD in the full, four-dimensional phase diagram at
finite T; μB; μS; μQ [50,51]. We will use the μ̂i ¼ μi=T
shorthand notation in this manuscript. Currently, results for
the expansion coefficients are available up to order Oðμ6BÞ
[21,47]. The region of validity of the resulting expansion is
usually determined by the range in chemical potential

within which an apparent convergence is achieved. This
is stated to be μ̂B ≲ 2–2.5 [15,46].
High order derivatives of the pressure are notoriously

difficult to calculate, as they suffer from a low signal-to-
noise ratio [40]. Moreover, studies of chiral models
revealed that the structure of the temperature dependence
of such observables becomes more and more complex
when higher orders are considered [52]. This may explain
why including one more term in a truncated Taylor series
will not always improve the convergence. On the contrary,
pathological behavior—namely, nonmonotonicity in the T
or μB dependence—appears in the extrapolated thermody-
namic quantities at chemical potentials beyond μ̂B ≲ 2–2.5.
Such an effect in the truncated Taylor series was pointed
out, e.g., in Refs. [53–55]. This is due to the fact that, for
large enough μ̂B, the observables at finite chemical poten-
tial are dictated by the μB ¼ 0 temperature dependence of
the last coefficient included in the expansion. Hence, the
structures appearing around the QCD transition temper-
ature in higher order coefficients are “translated” into the
finite-μB behavior of, e.g., the entropy, baryon density, etc.
Another inherent problem with the Taylor expansion is the
fact that it is carried out at constant temperature. This
means that the values of the coefficients at μB ¼ 0 and a
certain temperature T, determine the equation of state at the
same T at finite μB, while the pseudocritical temperature
Tpc might have varied considerably.
In Fig. 1, we show the baryon density nBðTÞ obtai-

ned from a Taylor expansion with the coefficients in
Ref. [21], at μ̂B ¼ 3. The extrapolation is shown including
an increasing number of coefficients, to show the effect
of higher-order ones. The leading-order and higher trunca-
tions refer to ∼μ̂B∂nBðTÞ=∂μ̂B, or ∼ 1

6
μ̂3B∂3nBðTÞ=∂μ̂3B, etc.

being the last term in the expansion. The derivatives are
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FIG. 1. Baryon density from a Taylor expansion with the
coefficients in Ref. [21], at μB=T ¼ 3, as a function of the
temperature. Different colors correspond to the order to which the
expansion is carried out: leading order (LO) in pink, next-to-
leading order (NLO) in green, and next-to-next-to-leading order
(N2LO) in blue.
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taken at μB ¼ 0. Two features emerge fromFig. 1: (1) theLO
and next-to-leading order datasets are very different from
each other, meaning that the series is not converging fast at
this μ̂B; (2) the inclusion of all the coefficients in Ref. [21]
causes unphysical nonmonotonic behavior. Incidentally,
recent estimates on coarse lattices [56,57], but also univer-
sality arguments [58], place the convergence in the same ball
park in μB.
Here, we present an alternative summation scheme

which can better cope with the fact that the QCD transition
temperature presents a μB dependence. We start from the
observation that we made while working with imaginary
values of the chemical potentials in an earlier work. In the
upper panel of Fig. 2, we show temperature scans of the
quantity nBðTÞ=μ̂B ¼ χB1 ðT; μ̂BÞ=μ̂B for several fixed
imaginary μ̂B values. The 0=0 limit at μB ¼ 0 can be easily
resolved and equals χB2 ðTÞ.
The T dependence of the normalized baryon density at

finite chemical potential appears to be simply rescaled

toward higher temperatures from the μB ¼ 0 results for χB2 .
A simple rescaling of temperatures can be described as

χB1 ðT; μ̂BÞ
μ̂B

¼ χB2 ðT 0; 0Þ; ð4Þ

where the actual temperature difference can be expressed
through a μB-dependent factor that we write, for simpli-
city, as

T 0 ¼ Tð1þ κμ̂2BÞ: ð5Þ

In the lower panel of Fig. 2, we show a version of the curves
in the upper panel, with the finite-μ̂B curves rescaled
following Eq. (5) with κ ¼ 0.0205. We note how well
the curves are superimposed to each other, even assum-
ing a single, T-independent parameter governing the
transformation.
Although rather suggestive, the description following

from Eq. (5) cannot serve as an alternative expansion
scheme. To this end, first, we note that, at vanishing
chemical potential, we can express the normalized baryon
density as a Taylor expansion

χB1
μ̂B

ðT; μ̂BÞ ¼ χB2 ðT;0Þ þ
μ̂2B
6
χB4 ðT;0Þ þ

μ̂4B
120

χB6 ðT;0Þ þ � � � :

ð6Þ

Then, we systematically generalize Eq. (5) assuming an
expansion in T 0 with temperature-dependent coefficients

T 0ðT; μ̂BÞ ¼ T½1þ κBB2 ðTÞμ̂2B þ κBB4 ðTÞμ̂4B þOðμ̂6BÞ�: ð7Þ

In the above equation, we introduced the new parameters
κBB2 ðTÞ and κBB4 ðTÞ, which describe the rescaling of the
temperature of χB1 =μ̂B at finite μB.
Now, having two expressions, Eqs. (6) and (4), for the

same quantity, we require their equality at each order in the
μ̂B expansion at μB ¼ 0, having

χB4 ðTÞ ¼ 6TκBB2 ðTÞ dχ2
dT

;

χB6 ðTÞ ¼ 60T2ðκBB2 Þ2ðTÞ d
2χ2
dT2

þ 120TκBB4 ðTÞ dχ2
dT

; ð8Þ

which, in turn, yields

κBB2 ðTÞ ¼ 1

6T
χB4 ðTÞ
χB2

0ðTÞ ;

κBB4 ðTÞ ¼ 1

360χB2
0ðTÞ3 ½3χ

B
2
0ðTÞ2χB6 ðTÞ − 5χB2

00ðTÞχB4 ðTÞ2�:

ð9Þ
This construction amounts to a reorganization of

the “canonical” Taylor series, wherein the systematic
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FIG. 2. Upper panel: The (imaginary) baryon density at
simulated (imaginary) baryon chemical potentials, divided by
the chemical potential. The points at μB ¼ 0 (black) show the
second baryon susceptibility χB2 ðTÞ. Lower panel: same curves as
in the upper panel, with a temperature rescaled in accordance to
Eq. (5) with κ ¼ 0.0205.
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expansion is carried in the quantity ðT 0 − TÞ=T. Essentially,
this formalism replaces the fixed-temperature μ̂B expansion
by a fixed-observable temperature expansion. We note that
observations and definitions analogous to those just sum-
marized can be made for strangeness-related quantities, too,
as described in the Supplemental Material [59], together
with the details of our formalism.
We remark that very similar equations have already been

used in Ref. [15] to calculate “lines of constant physics” to
Oðμ4BÞ order. In this reference, the pressure, energy density,
and entropy were calculated using the Taylor method, and
in a further step, lines were drawn on the μB − T phase
diagram, where these quantities are constant in some
normalization. The obtained κ2 coefficients are closely
related to ours. Contrary to Ref. [15], we use Eq. (7) as the
definition of a truncation scheme rather than to investigate a
Taylor expanded result.
Starting from the results at imaginary chemical potentials

in Fig. 2, we base our description of the entire chemical
potential dependence of the QCD free energy function on
χB1 ðT; μ̂BÞ=μ̂B and Eq. (5). It is essential that the truncation
scheme is based on one observable only, in order to
guarantee thermodynamic consistency: then, other quan-
tities will automatically obey thermodynamic relations.
Alternatively, one could base the procedure on the pressure,
entropy, or energy density, but the baryon density χB1 proves
to be the better choice due to its simplicity and the better
signal-to-noise ratio.
Results.—For the determination of κBB2 and κBB4 , one can

take advantage of simulations both at zero and finite
imaginary chemical potential. First, we calculated
κBB2 ðTÞ using Eq. (9). To extract κBB4 ðTÞ using the same
strategy, a precise result on χB6 ðTÞ would be necessary.

Instead, we utilize imaginary chemical potential simula-
tions, as detailed in the Supplemental Material [59].
In Fig. 3, we show the results of the temperature-by-

temperature fit procedure for the parameters κBB2 ðTÞ and
κBB4 ðTÞ, along with the hadron resonance gas (HRG) model
results. We find that, within errors, κBB2 ðTÞ has hardly any
dependence on the temperature, while κBB4 ðTÞ is every-
where consistent with zero at our current level of precision.
Nonetheless, a clear separation of almost 1 order of
magnitude appears between these two coefficients. We
also note that good agreement with the HRG results is
found up to at least T ¼ 150 MeV. Notably, a clear scale
separation between analogous κ2 and κ4 parameters at the
pseudocritical temperature is observed in chiral observ-
ables, too [19,36], as well as in the strangeness-related
observables discussed in the Supplemental Material [59].
In order to limit the influence of numerical effects on the

final observables, we construct smoother versions of our
final results for κBB2 and κBB4 , which are shown in Fig. 3 as
transparent bands. Because of the mild T dependence, we
perform a polynomial fit of order 5 for κBB2 , and of order 2
for κBB4 . The very good fit qualities show no need for higher
order polynomials. In order to stabilize the low-temperature
behavior, we included in the fit two points from the HRG
model. The fits fully take into account the systematic as
well as statistical correlations between different temper-
atures. The results of the fit are used as the input in the
thermodynamic calculations that follow.
From Eq. (5), nB can be determined at finite real

chemical potential and, from it, the other thermodynamic
quantities. The integration constant for the pressure is
obviously the pressure itself at μB ¼ 0. The thermodynamic
relationships that we use to generate all relevant observ-
ables are detailed in the Supplemental Material [59]. We
present our results for the finite real chemical potential
extrapolation of several thermodynamic quantities: the
various panels of Fig. 4 show the baryon density, pressure,
entropy, and energy density for μ̂B ¼ 0–3.5. Alongside our
results, we show predictions from the HRG model for
T < 150 MeV, which are in very good agreement with our
extrapolation for all observables, at all values of the
chemical potential. We note that the observables do not
suffer from the pathological behavior that affects the Taylor
expansion, thus, highly improving the results currently
available in the literature.
In the upper left panel of Fig. 4, we also show the

comparison of our results for the baryon density to the
simplified case where κBB4 is neglected. The inclusion of
the next-to-leading-order parameter came at the cost of an
increased uncertainty at larger chemical potential.
However, the results are compatible with each other, which
demonstrates the improved convergence of our method.
Conclusions.—We proposed an alternative summation

scheme for the equation of state of QCD at finite real
chemical potential, designed to overcome the typical

FIG. 3. Continuum extrapolated result for the expansion
parameters κBB2 ðTÞ and κBB4 ðTÞ (top panel). HRG results are
shown up to T ¼ 160 MeV (in green for κBB2 and orange for κBB4 ,
respectively). The bands show correlated polynomial fits as
described in the text.
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shortcomings of the Taylor expansion. Through simula-
tions at zero and imaginary chemical potentials, we
determined the LO and NLO parameters describing the
chemical potential dependence of the baryon density, which
we, then, extrapolated to large real chemical potentials.
By combining this new element, and previously pub-

lished results for the equation of state at vanishing μB, we
reconstructed all thermodynamic variables at chemical
potential as large as μB=T ¼ 3.5 with rather limited
uncertainty. Systematic as well as statistical errors were
considered in the analysis.
Our results, although still limited in precision at the level

of κBB2 and κBB4 , suggest that the avenue we pursue in this
Letter is rather promising for the description of QCD
thermodynamics at finite chemical potential. Moreover, our
procedure is systematically improvable with sufficient
computing power, and might prove to be a better strategy
than existing canonical approaches.
In this Letter, we limited ourselves to the case where the

strange and electric chemical potentials are set to zero. We
reserve, for future work, the exploration of the phenom-
enologically relevant case of strangeness neutrality and
fixed electric charge to baryon ratio.
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