000904538 001__ 904538
000904538 005__ 20240625095036.0
000904538 0247_ $$2doi$$a10.1103/PhysRevB.103.155139
000904538 0247_ $$2ISSN$$a1098-0121
000904538 0247_ $$2ISSN$$a2469-9977
000904538 0247_ $$2ISSN$$a0163-1829
000904538 0247_ $$2ISSN$$a0556-2805
000904538 0247_ $$2ISSN$$a1095-3795
000904538 0247_ $$2ISSN$$a1538-4489
000904538 0247_ $$2ISSN$$a1550-235X
000904538 0247_ $$2ISSN$$a2469-9950
000904538 0247_ $$2ISSN$$a2469-9969
000904538 0247_ $$2Handle$$a2128/30002
000904538 0247_ $$2WOS$$aWOS:000646763900001
000904538 037__ $$aFZJ-2021-06108
000904538 082__ $$a530
000904538 1001_ $$0P:(DE-Juel1)184680$$aBotzung, T.$$b0$$eCorresponding author
000904538 245__ $$aEffects of energy extensivity on the quantum phases of long-range interacting systems
000904538 260__ $$aWoodbury, NY$$bInst.$$c2021
000904538 3367_ $$2DRIVER$$aarticle
000904538 3367_ $$2DataCite$$aOutput Types/Journal article
000904538 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641568253_19565
000904538 3367_ $$2BibTeX$$aARTICLE
000904538 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904538 3367_ $$00$$2EndNote$$aJournal Article
000904538 520__ $$aWe investigate the ground state properties of one-dimensional hard-core bosons interacting via a variable long-range potential using the density matrix renormalization group. We show that restoring energy extensivity in the system, which is done by rescaling the interaction potential with a suitable size-dependent factor known as Kac's prescription, has a profound influence on the low-energy properties in the thermodynamic limit. While an insulating phase is found in the absence of Kac's rescaling, the latter leads to a new metallic phase that does not fall into the conventional Luttinger liquid paradigm. We discuss a scheme for the observation of this new phase using cavity-mediated long-range interactions with cold atoms. Our findings raise fundamental questions on how to study the thermodynamics of long-range interacting quantum systems.
000904538 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000904538 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904538 7001_ $$00000-0003-4129-9312$$aHagenmüller, D.$$b1
000904538 7001_ $$0P:(DE-HGF)0$$aMasella, G.$$b2
000904538 7001_ $$00000-0001-7678-3185$$aDubail, J.$$b3
000904538 7001_ $$0P:(DE-HGF)0$$aDefenu, N.$$b4
000904538 7001_ $$0P:(DE-HGF)0$$aTrombettoni, A.$$b5
000904538 7001_ $$0P:(DE-HGF)0$$aPupillo, G.$$b6
000904538 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.103.155139$$gVol. 103, no. 15, p. 155139$$n15$$p155139$$tPhysical review / B$$v103$$x1098-0121$$y2021
000904538 8564_ $$uhttps://juser.fz-juelich.de/record/904538/files/PhysRevB.103.155139.pdf$$yOpenAccess
000904538 909CO $$ooai:juser.fz-juelich.de:904538$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184680$$aForschungszentrum Jülich$$b0$$kFZJ
000904538 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000904538 9141_ $$y2021
000904538 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000904538 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000904538 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904538 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000904538 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000904538 920__ $$lyes
000904538 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000904538 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1
000904538 980__ $$ajournal
000904538 980__ $$aVDB
000904538 980__ $$aUNRESTRICTED
000904538 980__ $$aI:(DE-Juel1)PGI-2-20110106
000904538 980__ $$aI:(DE-Juel1)IAS-3-20090406
000904538 9801_ $$aFullTexts