000904541 001__ 904541
000904541 005__ 20240625095123.0
000904541 0247_ $$2doi$$a10.1016/j.physd.2021.132909
000904541 0247_ $$2ISSN$$a0167-2789
000904541 0247_ $$2ISSN$$a1872-8022
000904541 0247_ $$2Handle$$a2128/30629
000904541 0247_ $$2altmetric$$aaltmetric:97104447
000904541 0247_ $$2WOS$$aWOS:000642478400001
000904541 037__ $$aFZJ-2021-06111
000904541 082__ $$a530
000904541 1001_ $$0P:(DE-Juel1)176760$$aDi Cairano, Loris$$b0
000904541 245__ $$aHamiltonian chaos and differential geometry of configuration space–time
000904541 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904541 3367_ $$2DRIVER$$aarticle
000904541 3367_ $$2DataCite$$aOutput Types/Journal article
000904541 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643694009_24165
000904541 3367_ $$2BibTeX$$aARTICLE
000904541 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904541 3367_ $$00$$2EndNote$$aJournal Article
000904541 520__ $$aThis paper tackles Hamiltonian chaos by means of elementary tools of Riemannian geometry. More precisely, a Hamiltonian flow is identified with a geodesic flow on configuration space–time endowed with a suitable metric due to Eisenhart. Until now, this framework has never been given attention to describe chaotic dynamics. A gap that is filled in the present work. In a Riemannian-geometric context, the stability/instability of the dynamics depends on the curvature properties of the ambient manifold and is investigated by means of the Jacobi–Levi-Civita (JLC) equation for geodesic spread. It is confirmed that the dominant mechanism at the ground of chaotic dynamics is parametric instability due to curvature variations along the geodesics. A comparison is reported of the outcomes of the JLC equation written also for the Jacobi metric on configuration space and for another metric due to Eisenhart on an extended configuration space–time. This has been applied to the Hénon–Heiles model, a two-degrees of freedom system. Then the study has been extended to the 1D classical Heisenberg model at a large number of degrees of freedom. Both the advantages and drawbacks of this geometrization of Hamiltonian dynamics are discussed. Finally, a quick hint is put forward concerning the possible extension of the differential–geometric investigation of chaos in generic dynamical systems, including dissipative ones, by resorting to Finsler manifolds.
000904541 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000904541 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904541 7001_ $$0P:(DE-HGF)0$$aGori, Matteo$$b1
000904541 7001_ $$0P:(DE-HGF)0$$aPettini, Giulio$$b2
000904541 7001_ $$0P:(DE-HGF)0$$aPettini, Marco$$b3$$eCorresponding author
000904541 773__ $$0PERI:(DE-600)1466587-6$$a10.1016/j.physd.2021.132909$$gVol. 422, p. 132909 -$$p132909 -$$tPhysica / D$$v422$$x0167-2789$$y2021
000904541 8564_ $$uhttps://juser.fz-juelich.de/record/904541/files/2101.00997.pdf$$yOpenAccess
000904541 8564_ $$uhttps://juser.fz-juelich.de/record/904541/files/Author%20post%20print.pdf$$yOpenAccess
000904541 909CO $$ooai:juser.fz-juelich.de:904541$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904541 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176760$$aForschungszentrum Jülich$$b0$$kFZJ
000904541 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000904541 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000904541 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000904541 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000904541 9141_ $$y2022
000904541 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904541 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA D : 2019$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000904541 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000904541 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000904541 920__ $$lyes
000904541 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000904541 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000904541 980__ $$ajournal
000904541 980__ $$aVDB
000904541 980__ $$aUNRESTRICTED
000904541 980__ $$aI:(DE-Juel1)IAS-5-20120330
000904541 980__ $$aI:(DE-Juel1)INM-9-20140121
000904541 9801_ $$aFullTexts