001     904541
005     20240625095123.0
024 7 _ |a 10.1016/j.physd.2021.132909
|2 doi
024 7 _ |a 0167-2789
|2 ISSN
024 7 _ |a 1872-8022
|2 ISSN
024 7 _ |a 2128/30629
|2 Handle
024 7 _ |a altmetric:97104447
|2 altmetric
024 7 _ |a WOS:000642478400001
|2 WOS
037 _ _ |a FZJ-2021-06111
082 _ _ |a 530
100 1 _ |a Di Cairano, Loris
|0 P:(DE-Juel1)176760
|b 0
245 _ _ |a Hamiltonian chaos and differential geometry of configuration space–time
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643694009_24165
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper tackles Hamiltonian chaos by means of elementary tools of Riemannian geometry. More precisely, a Hamiltonian flow is identified with a geodesic flow on configuration space–time endowed with a suitable metric due to Eisenhart. Until now, this framework has never been given attention to describe chaotic dynamics. A gap that is filled in the present work. In a Riemannian-geometric context, the stability/instability of the dynamics depends on the curvature properties of the ambient manifold and is investigated by means of the Jacobi–Levi-Civita (JLC) equation for geodesic spread. It is confirmed that the dominant mechanism at the ground of chaotic dynamics is parametric instability due to curvature variations along the geodesics. A comparison is reported of the outcomes of the JLC equation written also for the Jacobi metric on configuration space and for another metric due to Eisenhart on an extended configuration space–time. This has been applied to the Hénon–Heiles model, a two-degrees of freedom system. Then the study has been extended to the 1D classical Heisenberg model at a large number of degrees of freedom. Both the advantages and drawbacks of this geometrization of Hamiltonian dynamics are discussed. Finally, a quick hint is put forward concerning the possible extension of the differential–geometric investigation of chaos in generic dynamical systems, including dissipative ones, by resorting to Finsler manifolds.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gori, Matteo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pettini, Giulio
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pettini, Marco
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.physd.2021.132909
|g Vol. 422, p. 132909 -
|0 PERI:(DE-600)1466587-6
|p 132909 -
|t Physica / D
|v 422
|y 2021
|x 0167-2789
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/904541/files/2101.00997.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/904541/files/Author%20post%20print.pdf
909 C O |o oai:juser.fz-juelich.de:904541
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176760
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYSICA D : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21