001     904545
005     20240625095123.0
024 7 _ |a 10.1021/acs.jcim.1c00667
|2 doi
024 7 _ |a 0095-2338
|2 ISSN
024 7 _ |a 1549-9596
|2 ISSN
024 7 _ |a 1520-5142
|2 ISSN
024 7 _ |a (BIS
|2 ISSN
024 7 _ |a 44.2004)
|2 ISSN
024 7 _ |a 1549-960X
|2 ISSN
024 7 _ |a 2128/31906
|2 Handle
024 7 _ |a 34351148
|2 pmid
024 7 _ |a WOS:000688241800022
|2 WOS
037 _ _ |a FZJ-2021-06115
082 _ _ |a 540
100 1 _ |a Giannos, Thomas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a CHARMM Force-Field Parameters for Morphine, Heroin, and Oliceridine, and Conformational Dynamics of Opioid Drugs
260 _ _ |a Washington, DC
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664257730_17636
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Opioid drug binding to specialized G protein-coupled receptors (GPCRs) can lead to analgesia upon activation via downstream Gi protein signaling and to severe side effects via activation of the β-arrestin signaling pathway. Knowledge of how different opioid drugs interact with receptors is essential, as it can inform and guide the design of safer therapeutics. We performed quantum and classical mechanical computations to explore the potential energy landscape of four opioid drugs: morphine and its derivatives heroin and fentanyl and for the unrelated oliceridine. From potential energy profiles for bond twists and from interactions between opioids and water, we derived a set of force-field parameters that allow a good description of structural properties and intermolecular interactions of the opioids. Potential of mean force profiles computed from molecular dynamics simulations indicate that fentanyl and oliceridine have complex energy landscapes with relatively small energy penalties, suggesting that interactions with the receptor could select different binding poses of the drugs.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lešnik, Samo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bren, Urban
|0 0000-0002-8806-3019
|b 2
700 1 _ |a Hodošček, Milan
|0 0000-0002-6728-9318
|b 3
700 1 _ |a Domratcheva, Tatiana
|0 0000-0002-7001-1114
|b 4
700 1 _ |a Bondar, Ana-Nicoleta
|0 P:(DE-Juel1)187548
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.jcim.1c00667
|g Vol. 61, no. 8, p. 3964 - 3977
|0 PERI:(DE-600)1491237-5
|n 8
|p 3964 - 3977
|t Journal of chemical information and modeling
|v 61
|y 2021
|x 0095-2338
856 4 _ |y Published on 2021-08-05. Available in OpenAccess from 2022-08-05.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/904545/files/Giannos_Lesnik_manuscript_revised_rs.pdf
856 4 _ |u https://juser.fz-juelich.de/record/904545/files/acs.jcim.1c00667.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904545
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0002-8806-3019
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-6728-9318
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-7001-1114
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)187548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM INF MODEL : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21