Hauptseite > Publikationsdatenbank > CHARMM Force-Field Parameters for Morphine, Heroin, and Oliceridine, and Conformational Dynamics of Opioid Drugs > print |
001 | 904545 | ||
005 | 20240625095123.0 | ||
024 | 7 | _ | |a 10.1021/acs.jcim.1c00667 |2 doi |
024 | 7 | _ | |a 0095-2338 |2 ISSN |
024 | 7 | _ | |a 1549-9596 |2 ISSN |
024 | 7 | _ | |a 1520-5142 |2 ISSN |
024 | 7 | _ | |a (BIS |2 ISSN |
024 | 7 | _ | |a 44.2004) |2 ISSN |
024 | 7 | _ | |a 1549-960X |2 ISSN |
024 | 7 | _ | |a 2128/31906 |2 Handle |
024 | 7 | _ | |a 34351148 |2 pmid |
024 | 7 | _ | |a WOS:000688241800022 |2 WOS |
037 | _ | _ | |a FZJ-2021-06115 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Giannos, Thomas |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a CHARMM Force-Field Parameters for Morphine, Heroin, and Oliceridine, and Conformational Dynamics of Opioid Drugs |
260 | _ | _ | |a Washington, DC |c 2021 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1664257730_17636 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Opioid drug binding to specialized G protein-coupled receptors (GPCRs) can lead to analgesia upon activation via downstream Gi protein signaling and to severe side effects via activation of the β-arrestin signaling pathway. Knowledge of how different opioid drugs interact with receptors is essential, as it can inform and guide the design of safer therapeutics. We performed quantum and classical mechanical computations to explore the potential energy landscape of four opioid drugs: morphine and its derivatives heroin and fentanyl and for the unrelated oliceridine. From potential energy profiles for bond twists and from interactions between opioids and water, we derived a set of force-field parameters that allow a good description of structural properties and intermolecular interactions of the opioids. Potential of mean force profiles computed from molecular dynamics simulations indicate that fentanyl and oliceridine have complex energy landscapes with relatively small energy penalties, suggesting that interactions with the receptor could select different binding poses of the drugs. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lešnik, Samo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bren, Urban |0 0000-0002-8806-3019 |b 2 |
700 | 1 | _ | |a Hodošček, Milan |0 0000-0002-6728-9318 |b 3 |
700 | 1 | _ | |a Domratcheva, Tatiana |0 0000-0002-7001-1114 |b 4 |
700 | 1 | _ | |a Bondar, Ana-Nicoleta |0 P:(DE-Juel1)187548 |b 5 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1021/acs.jcim.1c00667 |g Vol. 61, no. 8, p. 3964 - 3977 |0 PERI:(DE-600)1491237-5 |n 8 |p 3964 - 3977 |t Journal of chemical information and modeling |v 61 |y 2021 |x 0095-2338 |
856 | 4 | _ | |y Published on 2021-08-05. Available in OpenAccess from 2022-08-05. |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/904545/files/Giannos_Lesnik_manuscript_revised_rs.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904545/files/acs.jcim.1c00667.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:904545 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 0000-0002-8806-3019 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 0000-0002-6728-9318 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 0000-0002-7001-1114 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)187548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM INF MODEL : 2019 |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-05-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|