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The topological susceptibility of the SU(3) pure gauge theory is calculated in the deconfined phase at 
temperatures up to 10Tc . At such large temperatures the susceptibility is suppressed, topologically non-
trivial configurations are extremely rare. Thus, direct lattice simulations are not feasible. The density of 
states (DoS) method is designed to simulate rare events, we present an application of the DoS method 
to the problem of high temperature topological susceptibility. We reconstruct the histogram of the 
charge sectors that one could have obtained in a naive importance sampling. Our findings are perfectly 
consistent with a free instanton gas.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The past decade has witnessed an immense progress in the the-
oretical description of the thermodynamics of strongly interacting 
matter through the advances in the solution strategies of the un-
derlying theory, Quantum Chromodynamics (QCD). New insights 
came from a wide range of first principle approaches ranging from 
resummed perturbation theory [1] through functional methods 
[2,3] to direct simulations on the lattice [4]. One of the remaining 
less understood aspects of QCD is related to the role of instantons. 
One example is the strong CP problem for which the Peccei-Quinn 
mechanism [5] offers a solution by introducing the axion particle 
[6,7]. The hypothetical axion is searched for in various experimen-
tal designs, e.g. by shining light through a wall [8], helioscopes 
[9,10] and haloscopes [11,12]. The search can be narrowed down 
by constraints on the axion mass, e.g. by the requirement, that ax-
ions have no more contribution to the dark matter than the total 
observed abundance [13–15]. For the latter cosmological input to 
be effective we have to obtain information for the axion potential 
at the temperatures of the Early Universe, where these were pro-
duced. This strategy was pursued in the framework of lattice QCD 
in Ref. [16].

The QCD axion effectively couples to the gauge invariant but CP 
breaking combination of the strong fields

q(x) = 1

32π2
εμνρσ Tr(Fμν(x)Fρσ (x)) . (1)
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SCOAP3.
This quantity is called topological charge, as its integral Q eval-
uates to integer numbers and this charge is topologically stable. 
Evaluating this term at temperature T in a space-time volume of 
� we can express the topological susceptibility as

χ(T ) =
∫

d4x〈q(x)q(0)〉T ,	=0 = lim
�→∞

〈Q 2〉T ,	=0

�
. (2)

χ(T ) determines the quadratic term of the axion potential, while 
higher order fluctuations of the charge control the details of the 
shape of the potential.

The determination of the topological susceptibility using lattice 
methods has a long history [17–25]. Slightly below the QCD tran-
sition temperature susceptibilities close to the zero temperature 
value were observed. At high temperatures, on the other hand, 
χ(T ) drops with an approximate power law. The power law was 
actually expected from the Dilute Instanton Gas Approximation 
(DIGA) [26]. The rapid drop of the susceptibility with the tem-
perature manifests in the finite volume lattice simulations such 
that calorons (the finite temperature localized objects that carry 
a topological charge) are extremely rare. Lattice QCD simulations 
would need to sample such rare events with sufficient statistics 
to determine at least the variance of Q . The problem of freezing 
topological sectors in the lattice update algorithms poses an addi-
tional challenge. Thus, brute force approaches e.g. in Ref. [22] are 
naturally limited to a short temperature range.

Several ideas have been proposed to circumvent aforemen-
tioned problems. In Refs. [27,28] analytic continuation from imagi-
nary 	 parameters was used to map out χ(T ) and other parame-
ters of the free energy, offering a way to calculate higher moments 
of the topological charge. Refs. [16,29] addressed the rarity of topo-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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logical configurations in the Markov chain of simulation updates. 
It was observed that at sufficiently high temperatures configura-
tions with |Q | ≥ 2 practically never occur even if the volume is 
kept large enough to contain the g2T or even Tc scale. Simulat-
ing in the Q = 1 and Q = 0 sectors separately and determining 
their relative free energy provides for an indirect method to calcu-
late χ(T ) at high T . While this method was applied successfully, 
one had to rely on the cancellation of a quartic divergence in 
the trace anomaly. A very different, reweighting based approach 
was advocated by Refs. [30,31] where a modified update algo-
rithm was introduced to enhance the production of dislocations 
that may grow into calorons. Ref. [32] makes a further step and 
includes the enhancement force into the microcanonical update 
rather than deferring it into a Metropolis step. A common fea-
ture of these reweighting based methods is the use of a proxy 
charge, which is an easily accessible non-integer function of the 
gauge fields that strongly correlates with the integer charge Q . 
Most of these methods can or have been generalized for the case 
of dynamical fermions [16,23].

In many lattice studies configurations with Q = ±2 are mostly 
missing. Thus, possible interactions between calorons are not de-
scribed. While Q = 2 configurations have arguably small weight at 
high temperature, one may not want to exclude such interactions 
from the beginning. In Ref. [33] the statistics of both calorons and 
anti-calorons were considered (as opposed to the net charge). The 
distribution of the topological objects was perfectly consistent with 
an ideal gas at a temperature as low as T ≈ 1.05 MeV.

In our work we corroborate the DIGA picture in the high tem-
perature Yang-Mills theory. We calculate the topological suscepti-
bility using lattice simulations, not ignoring the very rare Q = ±2
sectors. We find that the weight of the latter supports the ideal 
gas description.

We approach the problem of rare calorons with the Density of 
States (DoS) method. Originally, the DoS method studies several 
small energy ranges separately to determine the energy depen-
dence of the density of states [34]. The DoS is designed to simulate 
the physics of rare events. A prominent example for its successful 
use is the solution of the sign problem in heavy dense QCD [35]. 
For a detailed review of the recent progress see [36] and refer-
ences therein. This study aims to show for the first time that the 
DoS is applicable to the problem of measuring the topological sus-
ceptibility.

In a nutshell, our strategy uses a micro-canonical force on a 
proxy charge in the well defined framework of the DoS method. 
The rare events with a large proxy charge are sampled and provide 
for configurations with Q = ±1 and beyond. As an additional mea-
sure to reduce auto-correlation times we also deploy the parallel 
tempering method. We consider here pure gauge theory, expand-
ing the method to QCD with quark degrees of freedom involves no 
further conceptual problems.

In Section 2 after a brief overview of the DoS method, we 
explain the details of the application of DoS to the pure gauge sys-
tem. We introduce our lattice setup in Section 3 and present the 
numerical results in Section 4. Finally, conclusions are offered in 
Section 5.

2. Density of states

First we state the idea of the Density of States method gener-
ally, before we specify to the problem of interest. Given an action 
S[
] of space-time dependent fields 
(x, t), we are interested in 
the partition function:

Z =
∫

D
e−S[
]. (3)

Now using the fact that the value of the Gaussian integral
2

∞∫
−∞

dc e− P
2 (c−a)2 =

√
2π

P
(4)

is independent of the constant a, we can rewrite the integral ex-
pression for the partition function such that up to an irrelevant 
normalization factor we have

Z =
∫

D


∞∫
−∞

dc e− P
2 (c−F [
])2

e−S[
], (5)

where F [
] is an arbitrary functional of the fields. Swapping the 
order of the integrations we can write

Z =
∞∫

−∞
dc ρ(c) (6)

where we defined the ‘density of states’:

ρ(c) =
∫

D
e−S[
]− P
2 (c−F [
])2

. (7)

If we choose F to be the energy functional and consider the limit 
P → ∞ than ρ(c) indeed describes the density of the energy 
states of the system, and we get the partition function as an in-
tegral over energy. The formulas remain correct for an arbitrary 
functional F [
] and also for finite P . In this case we call ρ(c) the 
generalized density of states.

We can measure observables using the formula

〈A〉 = 1

Z

∞∫
−∞

dc

∫
D
A[
]e−S[
]− P

2 (c−F [
])2

=
∫ ∞
−∞ dc ρ(c)〈A〉c∫ ∞

−∞ dc ρ(c)
(8)

where we have defined the notation 〈· · · 〉c , which is an average 
with the action Sc[
] = S[
] + P

2 (c − F [
])2:

〈A〉c =
∫

D
e−Sc [
] A[
]∫
D
e−Sc[
] = 1

ρ(c)

∫
D
e−Sc [
] A[
] (9)

The density of states is reconstructed by measuring the deriva-
tive of its logarithm:

∂ lnρ(c)

∂c
= 1

ρ(c)

∫
D
e−S[
]− P

2 (c−F [
])2
(−P (c − F [
]))

= 〈−P (c − F [
])〉c, (10)

we can thus measure ∂c lnρ(c) on a predetermined set of points 
and reconstruct lnρ(c) (and thus ρ(c)) using numerical integration 
(with e.g. the trapezoid rule). Using this prescription we obtain 
lnρ(c) with an error magnitude approximately independent of c, 
thus we get ρ with approximately constant relative errors in the 
whole c range. An alternative determination of ρ(c) in the P → ∞
limit is possible by simply measuring the histogram of the ob-
servable F [
] in a simulation with P = 0. In this case, however, 
the statistical errors are proportional to 

√
ρ(c), which can be pro-

hibitive. Using the former method, thus, allows the determination 
of the probability of certain rare events in the configuration space 
of the theory, which one could not hope to reach in a naive im-
portance sampling simulation. A similar setup was used in [37,38]
at nonzero chemical potential μ, where an additional sign prob-
lem is also present. For the present study, we stay at 	 = 0, so the 
theory has no sign problem. In a recent paper [39] the density of 
states method was used in a U (1) gauge theory with a 	-term. 
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There the authors used open boundary conditions to avoid quanti-
zation of the topological charge and make the system amenable to 
the DoS treatment. Here we take a different route, see below.

We will calculate the topological susceptibility χ = 〈Q 2〉/�, 
where Q is the topological charge and � is the four-volume. At 
large temperatures in the deconfined phase, the topological sus-
ceptibility is known to be very small [26]. In an importance sam-
pling simulation the theory is almost always in the zero charge 
sector, thus the value of the susceptibility is given by the probabil-
ity of rare visits to the ±1 charge sectors. The idea of this paper 
is to use the density of states method to measure the probabil-
ity of these unlikely visits to nonzero charge sectors. However, the 
topological charge of the configurations is given by integer num-
bers such that the density of states in this case would be a sum of 
delta functions on the integer values (in the P → ∞ limit), and the 
procedure described above is not applicable. To work around this 
problem, we need a proxy charge Q P [U ] (a function of the link 
variables U ) which is a continuous value such that Q P [U ] is close 
to the integer topological charge Q [U ] [32]. Recall the topological 
charge of a Yang-Mills theory defined in Eq. (1). On the lattice, one 
can e.g. choose a field theoretical definition of the charge based 
on the Wilson flow [40,41], similarly to the cooling techniques in-
troduced in [42]. (For other equivalent definitions, see [43].) One 
evolves the gauge field configurations using the flow equations 
given by the Wilson plaquette action, and measures a discretised 
version of the field strength tensor appearing in Eq. (1). One ob-
serves that this discretised definition tends to integer numbers at 
large flow times, and one can carry out the continuum limit by fix-
ing the flow time (at which the measurement of the charge is to 
be carried out) in physical units.

At zero flow time the gluonic definition of the charge is not 
close to integer numbers, and typically it can be far from the in-
teger topological sector of the configuration. The idea is that if 
we define the proxy charge Q P to be the charge at small flow 
time, then it will not be restricted to integer numbers. The inte-
ger values are approached after a longer flow time fixed e.g. to the 
temperature scale. In order to be able to use a Hybrid Monte Carlo 
algorithm, we need to be able to calculate the derivative of Q P

with respect to the gauge fields. This suggests to use the analytic 
stout smearing procedure [44], so we define

Q P [U ] = Q clov[U ′
n,ρ ], (11)

where Q clov is the clover discretisation of the topological charge 
(1) and U ′

n,ρ are the stout smeared link variables using n smear-
ing steps with stepsize ρ . A similar use of the proxy charge was 
described in Ref. [32]. We thus use F [U ] = Q P [U ] in the following 
to constrain the action.

3. Simulation setup

The topological susceptibility is often normalized to the tran-
sition temperature’s fourth power. On an N3

S × NT lattice is given 
by

χ(T )

T 4
c

= 〈Q 2〉
�T 4

c
= 〈Q 2〉

(N S/NT )3

(
T

Tc

)4

. (12)

The gauge action with tree-level Symanzik improvement, and 
the clover discretised topological charge density in Q P is used in 
the simulations.

As discussed in Section 2 a separate simulation must be per-
formed for several c values, such that the appropriate range of the 
proxy charge is covered. Typically we have used 30-60 c values to 
measure ∂c lnρ(c) and expectation values as a function of c. As 
the theory is symmetric in c at 	 = 0, we only used non-negative 
3

c values, except for a test at T = 3Tc where we observed good 
agreement of the results of a simulation using c ∈ [0, 3.5] and an 
other, independent one using values c ∈ [−1.2, 1.2] (104χ/T 4

c =
1.162(71) vs 0.98(10), respectively). We measured the topological 
charge of every ∼ 50-th configuration using the gluonic definition 
after the Wilson flow. For the measurement of the exact topologi-
cal charge Q , we use an improved discretisation for the topological 
charge density including the 1 × 2 plaquettes in the clover for-
mula [45–47], which we evaluate at the flow time t = 1/(8T 2) =
N2

T a2/8. We round the obtained charge values to integer values, 
subsequently.

Unless stated otherwise, results for NT = 6, N S = 24 are pre-
sented. We use Hybrid Monte Carlo for updating the configura-
tions, such that the force of the fixing term of the action is calcu-
lated in every 3-4th step. For the calculation of Q P we typically 
use n = 4 stout smearing steps with ρ = 0.1. The algorithmic 
parameter P required hand-tuning to P = 1000. Too small val-
ues don’t constrain the dynamics enough to allow extrapolation 
of Q 
= 0 sectors, too large values lead to large force terms that 
require small HMC step sizes and thus slow down the simulation.

Finally ρ(c) is reconstructed by integrating ∂c lnρ(c). Expecta-
tion values of observables are calculated from Eq. (8) using the 
trapezoid rule. The undetermined overall factor of ρ(c) (which 
drops out of observables) can be fixed by keeping the integral ∫ ∞
−∞ ρ(c) normalized to 1. In practice we restrict the integral over 

positive values of c, and the integral has a cut-off at the largest 
c value simulated. Since ρ(c) = ρ(−c) and ρ(c) typically has an 
overall exponential decay for large c this is well justified. Statis-
tical errors are calculated using the Jackknife procedure. In Fig. 1
we show the reconstructed ρ(c) function for several temperatures. 
One observes a roughly exponential decay for large c which gets 
faster as the temperature is increased. At larger temperatures one 
sees a second local maximum around c ∼ 0.8 − 0.9, correspond-
ing to configurations which have topological charge Q = 1. At 
larger c values one can find similar peaks corresponding to the 
Q = 2, 3, . . . sectors.

There is a further ingredient in the used algorithm with the 
goal to reduce auto-correlation times. We use parallel temper-
ing [48,49] across the several simultaneously run ensembles, each 
working on a different c parameter. Parallel tempering adds a fur-
ther update step between the HMC trajectories. The update con-
sists of the swap of the gauge configurations between ensembles 
at neighbouring points of the c-grid. The change in the total action 
is taken into account by a Metropolis step. The tempering update 
allows dislocations produced at some c to travel in the c space and 
enhance the variety of the configurations at any given c parame-
ter. This comes at the price of having correlated errors on the ρ(c)
curve. These correlations are correctly kept when the c-integrals 
are calculated.

The grid of c values for a simulation is chosen such that there is 
sufficient overlap between neighbouring simulations. A dense grid 
helps maintaining a high acceptance rate for the tempering up-
dates and keeps the systematic error of the integral under control. 
Thus, we can keep the systematic error coming from the finite 
c grid below the magnitude of the statistical errors. In the right 
panel of Fig. 1 two reconstructed ρ(c) functions are compared: 
“disc. 1” has twice as many grid points as “disc. 2”. They differ 
only in the range where ρ(c) drops below 10−12 as observed in 
the Figure. The corresponding χ(T )/T 4

c values are 1.00(18) · 10−6

and 1.03(17) ·10−6, respectively for “disc. 1” and “disc. 2”. We used 
the coarser grid for the result plots.

For each c ensemble we determine the 〈Q 〉c average, this we 
show in Fig. 2 for several temperatures. As expected it roughly fol-
lows the Q = c line, and it has plateaus at integer values: if c is 
close to an integer number, then the system stays in the topologi-
cal sector picked out by c. In the region c ≈ 0.5 − 0.7 we see that 
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Fig. 1. The density of states for various temperatures (left), and at T = 6Tc with two different discretisations in c (right).
Fig. 2. The average of the topological charge Q as a function of c.

the average charge smoothly goes from 0 to 1. By checking the 
Monte Carlo history of the topological charge in this region one 
can see that here the system goes through many tunnellings and 
the autocorrelation time of the topological charge remains small, 
though with the decrease of the lattice spacing the situation grad-
ually worsens as expected.

In Fig. 3 the quantity ρ(c)〈Q 2〉c is shown. The integral of this 
quantity gives the topological susceptibility (we normalize the in-
tegral of ρ(c) to 1). We see that this quantity gets more and more 
sharply peaked with increasing temperature, and there the |Q | > 1
sectors have negligible contribution to the topological susceptibil-
ity. Note that a logarithmic scale is used which means that even at 
the smallest temperature the peak of the Q = 1 sector carries by 
far the largest contribution to 〈Q 2〉. On the right panel we clearly 
see that the Q = 1 peak is located at a value c < 1, which then 
translates to a Q P value significantly less than one. This was ex-
pected since there is a multiplicative renormalization between Q P

and Q . After performing the c integral this renormalization factor 
does not enter our susceptibility results.

4. Results

We start with the calculation of the topological susceptibilities 
by performing the c integrals at each temperature. In Fig. 4 we 
show the resulting χ(T ) function for 243 × 6 lattices. Measure-
ments of the susceptibility using direct simulations (i.e. simula-
tions with P = 0) are also included for comparison. Direct simula-
tions get increasingly difficult as the temperature is increased, as 
in that case the system is almost always in the Q = 0 sector, with 
4

Table 1
The number and range of the c parameter as well as the statistics used at each c
value to calculate the continuum extrapolation in Fig. 5.

NT # of c vals. c range # of configs.

6 32 [0,1.2] 350
8 32 [0,1.3] 688
10 56 [0,1.5] 1265

rare visits to the Q = ±1 sector. The quick decay of the proba-
bility of configurations with Q 
= 0 makes direct measurements of 
the topological susceptibility above T ∼ 4Tc practically impossible 
[22].

The density of states approach does not depend on rare tun-
nellings and can be used at high temperatures, though at higher 
temperatures one has to deal with increasing thermalization and 
autocorrelation times. We observe a power law dependence of 
the susceptibility with the exponent −6.3(1). The presented χ(T )

as well as the exponent are affected by discretization effects, an 
agreement with the perturbative result [26] is expected to hold in 
the continuum limit only.

The continuum extrapolation is performed at one point: at 
T = 4.1Tc , using simulations on NT = 6, 8, 10, N S = 4NT lattices, 
as visible in Fig. 5. The temperature is chosen to facilitate compar-
ison with the result from [31] which reads: χ(T = 4.1Tc)/T 4

c =
4.84e±0.2410−6, where they performed the continuum extrapola-
tion for the quantity lnχ . (Note that Refs. [30,31] used the pla-
quette gauge action.) Our result is χ/T 4

c = (5.5 ± 2.8)10−6 and it’s 
close to the result we get from continuum extrapolating the loga-
rithm: χ/T 4

c = 6.61e±0.3010−6. The difference of the two extrapo-
lations one can take as the systematical error of the continuum 
extrapolation. One can wonder whether rounding Q to integer 
values at a certain flow time has an influence on our results. In 
Fig. 5 we show also the values which one gets without the final 
rounding step. We observe that for decreasing lattice spacing the 
effect of this rounding steadily decreases. In Table 1 the number of 
configurations we used to calculate the topological charge Q for 
this continuum extrapolation is listed. Note that we measured the 
charge after every ∼50 HMC trajectories, but the quantity ∂c lnρ(c)
is measured more often as it is a much cheaper observable.

Next we turn to the question of instanton interactions and 
the applicability of the dilute instanton gas approximation (DIGA), 
which assumes interactions are negligible. At large temperatures 
the appearance of a caloron is so rare that the probability that two 
calorons appear close to each other is small, therefore the DIGA is 
expected to be a good approximation. In this case it is expected 
that the value of 〈Q 2〉 is proportional to the volume and thus the 
susceptibility in Eq. (12) is independent of the volume.
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Fig. 3. The average of the topological charge squared times the density of states ρ(c) as a function of c. The integral of this function gives the topological susceptibility. On 
the left panel we show the logarithm of the integrand for various temperatures with LT = 4, on the right panel we fix T = 1.5Tc and vary the volume in a linear plot.
Fig. 4. The topological susceptibility measured with the brute force method and 
with the DoS approach. We show a power law fit with a slope of -6.3(1) with 
dashed line.

Fig. 5. Continuum extrapolation of the topological susceptibility at T = 4.1Tc us-
ing NT = 6, 8, 10. We show results from the prescription when at flow time 
t = 1/(8T 2) the values of Q are rounded to integer values or when this round-
ing step is not performed. A linear fit for both sets of points is indicated.

To investigate this behaviour we have performed simulations at 
T = 1.5Tc at two different spatial box sizes L = 4/T and L = 6/T . 
In Fig. 3 (right) the quantity 〈Q 2〉cρ(c) is shown for the two vol-
umes. Since the ρ(c) function is normalized to one, the integral 
of this function gives 〈Q 2〉. One sees that at LT = 4 mainly the 
Q = 1 peak contributes, as in the smaller volume the appearance 
5

of two calorons is relatively rare. In contrast, in the larger volume 
the Q = 2 sector gives a non-negligible contribution to the sus-
ceptibility. The results for the susceptibility are consistent: χ/T 4

c =
0.00716(56) on the smaller lattice and χ/T 4

c = 0.00755(48) on the 
larger lattice. The χ values remain volume independent, showing 
that neglecting calorons’ interaction is indeed a good approxima-
tion and we could get fairly accurate results in the smaller volume 
by restricting our simulations to the 0 ≤ c ≤ 1.5 range. Because of 
the strong suppression of the calorons at larger temperatures the 
contribution from the higher sectors is even smaller.

We also study the observable b2, defined by

b2 = −〈Q 4〉 − 3〈Q 2〉2

12〈Q 2〉 (13)

which characterises the anharmonicity of the axion potential. It is 
expected that at large temperatures, where the DIGA approxima-
tion holds, b2 assumes the value -1/12. In small volumes where 
only the Q = 0, ±1 sector contributes, the value -1/12 follows 
from the fact that 〈Q 4〉 = 〈Q 2〉 and 〈Q 2〉 is small. In larger 
volumes, where calorons and anticalorons appear independently, 
their probability distribution follows the Skellam distribution: pk =
e−λ Ik(λ) (see also below), which leads to b2 = −1/12 as well. Ear-
lier results show that starting from T > 1.15Tc , b2 is very close 
to -1/12 [19]. In fact in all our simulations b2 is consistent with 
-1/12 within errors. As argued above, this is nontrivial only in the 
case where 〈Q 4〉 has a sizeable contribution from |Q | ≥ 2 sec-
tors. The simulation using LT = 6, T = 1.5Tc allows testing this 
case and we get a result compatible with the DIGA prediction: 
b2 = −0.0804(58).

The histogram of the topological charge is defined with the help 
of the Kronecker-delta function as

h(n) = 〈δQ ,n〉, (14)

where the overall normalization is chosen such that 
∑

n h(n) = 1. 
Using the DoS simulations we can reconstruct this as

h(n) =
∫

dcρ(c)〈δQ ,n〉c . (15)

In Fig. 6 we show reconstructed histograms. Note that some of 
the probabilities are so low that it would be practically impossi-
ble to measure them using naive simulations. In the right panel 
of Fig. 6 we show the reconstructed histograms at T = 1.5Tc for 
two different spatial volumes T L = 4 and T L = 6. We can model 
these histograms under the assumption that instantons are inde-
pendent of each other: this means that the number of calorons 
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Fig. 6. The reconstructed histogram of the topological charge in a simulation without the forcing term in the action. The lines represent fitted Skellam distributions: pk =
e−λ Ik(λ), where the λ parameter is consistent with 〈Q 2〉.
and anticalorons follow a Poisson distribution. Thus the total topo-
logical charge is distributed as the difference of two Poisson dis-
tributed random variables, known as the Skellam distribution: 
pk = e−λ Ik(λ), with Ik(λ), the modified Bessel function of the first 
kind. (This distribution is equivalent to taking the total number 
of calorons and anticalorons as a Poisson distributed variable and 
then assigning a random sign to each defect [50].) We observe that 
the fitted Skellam distribution describes the histograms well. This 
verifies that instantons appear independently of each other in our 
simulations. As expected the same λ parameter scaled with the 
volume describes the different spatial volumes, as one observes on 
the right panel of Fig. 6. The results of a “bruteforce” calculation 
with the unconstrained gauge action are also shown, using ≈ 3000
independent configurations.

5. Conclusions

In this study the Density of States method is applied to the 
SU(3) pure gauge theory in order to calculate its topological sus-
ceptibility at high temperatures. In practice, we introduce a force 
term on a proxy charge, which may assume non-integer values, 
but correlates with the integer topological charge. This allows the 
mapping out of the proxy charge density using DoS.

The topological susceptibility is calculated in a temperature 
range T /Tc = 1.2 . . . 10. The DoS method also allows reconstructing 
the histograms of the topological sectors one would get in a naive 
importance sampling simulation. We observe that these histograms 
follow the Skellam distribution, which implies that instanton in-
teractions are negligible at the spatial volumes used in this study. 
This is additionally verified by performing simulations at two dif-
ferent spatial volumes at T = 1.5Tc , such that on the larger volume 
the |Q | = 2 charge sector has a non-negligible contribution to the 
susceptibility and to the b2 parameter.

In this exploratory study we mostly use NT = 6 ensembles, ex-
cept for one test at T = 4.1Tc , where the continuum extrapolation 
is carried out. The continuum extrapolation over all temperatures 
is to be carried out in a follow-up study, allowing a quantitative 
comparison with perturbative results.

Using the method presented here the topological susceptibil-
ity at individual temperatures can be addressed as opposed to the 
integral method in Refs. [16,29]. Also the absence of large cancella-
tions between the subtracted free energy contributions may open 
the way towards simulations at finer lattices.

For eventual applicability to axion phenomenology, fermionic 
degrees of freedom are also required. Performing a continuum 
extrapolation with dynamical fermions can be highly non-trivial 
and often very fine lattices are required. Nevertheless, since the 
6

modified dynamics affects the gauge sector only, the inclusion of 
fermions presents no conceptual challenge to the DoS method de-
scribed here.
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