Home > Publications database > Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen > print |
001 | 904555 | ||
005 | 20240625095116.0 | ||
024 | 7 | _ | |a 10.1021/acsptsci.0c00216 |2 doi |
024 | 7 | _ | |a 2128/30615 |2 Handle |
024 | 7 | _ | |a altmetric:102097142 |2 altmetric |
024 | 7 | _ | |a WOS:000662229400007 |2 WOS |
037 | _ | _ | |a FZJ-2021-06125 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kuzikov, Maria |0 0000-0001-8771-1865 |b 0 |e Corresponding author |
245 | _ | _ | |a Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen |
260 | _ | _ | |a Washington, DC |c 2021 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714997743_28930 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 μM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Costanzi, Elisa |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Reinshagen, Jeanette |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Esposito, Francesca |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Vangeel, Laura |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Wolf, Markus |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Ellinger, Bernhard |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Claussen, Carsten |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Geisslinger, Gerd |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Corona, Angela |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Iaconis, Daniela |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Talarico, Carmine |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Manelfi, Candida |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Cannalire, Rolando |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Rossetti, Giulia |0 P:(DE-Juel1)145921 |b 14 |
700 | 1 | _ | |a Gossen, Jonas |0 P:(DE-Juel1)172836 |b 15 |u fzj |
700 | 1 | _ | |a Albani, Simone |0 P:(DE-Juel1)181061 |b 16 |u fzj |
700 | 1 | _ | |a Musiani, Francesco |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Herzog, Katja |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Ye, Yang |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Giabbai, Barbara |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Demitri, Nicola |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Jochmans, Dirk |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Jonghe, Steven De |0 P:(DE-HGF)0 |b 23 |
700 | 1 | _ | |a Rymenants, Jasper |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Summa, Vincenzo |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Tramontano, Enzo |0 P:(DE-HGF)0 |b 26 |
700 | 1 | _ | |a Beccari, Andrea R. |0 P:(DE-HGF)0 |b 27 |
700 | 1 | _ | |a Leyssen, Pieter |0 P:(DE-HGF)0 |b 28 |
700 | 1 | _ | |a Storici, Paola |0 P:(DE-HGF)0 |b 29 |
700 | 1 | _ | |a Neyts, Johan |0 P:(DE-HGF)0 |b 30 |
700 | 1 | _ | |a Gribbon, Philip |0 P:(DE-HGF)0 |b 31 |
700 | 1 | _ | |a Zaliani, Andrea |0 P:(DE-HGF)0 |b 32 |
773 | _ | _ | |a 10.1021/acsptsci.0c00216 |g Vol. 4, no. 3, p. 1096 - 1110 |0 PERI:(DE-600)2934670-8 |n 3 |p 1096 - 1110 |t ACS pharmacology & translational science |v 4 |y 2021 |x 2575-9108 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904555/files/acsptsci.0c00216.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904555 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 0000-0001-8771-1865 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 13 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)145921 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)172836 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)181061 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 17 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 19 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 20 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 22 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 23 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 24 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 26 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 27 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 28 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 29 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 30 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 31 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 32 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-08-31 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS PHARMACOL TRANSL : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS PHARMACOL TRANSL : 2022 |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|