000904556 001__ 904556
000904556 005__ 20220224125208.0
000904556 0247_ $$2doi$$a10.1016/j.physa.2020.125325
000904556 0247_ $$2ISSN$$a0378-4371
000904556 0247_ $$2ISSN$$a1873-2119
000904556 0247_ $$2Handle$$a2128/30623
000904556 0247_ $$2WOS$$aWOS:000588306300015
000904556 037__ $$aFZJ-2021-06126
000904556 082__ $$a500
000904556 1001_ $$0P:(DE-Juel1)169313$$aMaggi, Luca$$b0$$eCorresponding author
000904556 245__ $$aHow super-localization affects vibrational energy exchange process in proteins
000904556 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2021
000904556 3367_ $$2DRIVER$$aarticle
000904556 3367_ $$2DataCite$$aOutput Types/Journal article
000904556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643381187_24158
000904556 3367_ $$2BibTeX$$aARTICLE
000904556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904556 3367_ $$00$$2EndNote$$aJournal Article
000904556 520__ $$aRecent experimental findings on a protein have shown the diffusion of vibrational energy occurs prevalently along non-bonded contacts instead through the backbone interaction, as it might be expected. These results are explained presenting a theoretical picture, supported by computational calculations, that accounts for these different behaviors in vibrational energy exchange process showing the collective motions on the backbone present a “superlocalized” nature as their asymptotic decay with the distance r is proportional to with , whereas collective motions associated to non-bonded contacts result simply localized, i.e. .
000904556 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000904556 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904556 773__ $$0PERI:(DE-600)1466577-3$$a10.1016/j.physa.2020.125325$$gVol. 562, p. 125325 -$$p125325 -$$tPhysica / A$$v562$$x0378-4371$$y2021
000904556 8564_ $$uhttps://juser.fz-juelich.de/record/904556/files/Author%20post-print.pdf$$yPublished on 2020-10-01. Available in OpenAccess from 2022-10-01.
000904556 909CO $$ooai:juser.fz-juelich.de:904556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169313$$aForschungszentrum Jülich$$b0$$kFZJ
000904556 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000904556 9141_ $$y2021
000904556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000904556 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904556 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA A : 2019$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904556 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000904556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904556 920__ $$lyes
000904556 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000904556 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000904556 9801_ $$aFullTexts
000904556 980__ $$ajournal
000904556 980__ $$aVDB
000904556 980__ $$aUNRESTRICTED
000904556 980__ $$aI:(DE-Juel1)IAS-5-20120330
000904556 980__ $$aI:(DE-Juel1)INM-9-20140121