000904557 001__ 904557
000904557 005__ 20240625095125.0
000904557 0247_ $$2doi$$a10.3390/ijms22041536
000904557 0247_ $$2ISSN$$a1422-0067
000904557 0247_ $$2ISSN$$a1661-6596
000904557 0247_ $$2Handle$$a2128/30616
000904557 0247_ $$2altmetric$$aaltmetric:99480003
000904557 0247_ $$2pmid$$a33546429
000904557 0247_ $$2WOS$$aWOS:000623818000001
000904557 037__ $$aFZJ-2021-06127
000904557 082__ $$a540
000904557 1001_ $$0P:(DE-HGF)0$$aMicheli, Pietro$$b0
000904557 245__ $$aA Mechanistic Model of NMDA and AMPA Receptor-Mediated Synaptic Transmission in Individual Hippocampal CA3-CA1 Synapses: A Computational Multiscale Approach
000904557 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2021
000904557 3367_ $$2DRIVER$$aarticle
000904557 3367_ $$2DataCite$$aOutput Types/Journal article
000904557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643354906_26921
000904557 3367_ $$2BibTeX$$aARTICLE
000904557 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904557 3367_ $$00$$2EndNote$$aJournal Article
000904557 520__ $$aInside hippocampal circuits, neuroplasticity events that individual cells may undergo during synaptic transmissions occur in the form of Long-Term Potentiation (LTP) and Long-Term Depression (LTD). The high density of NMDA receptors expressed on the surface of the dendritic CA1 spines confers to hippocampal CA3-CA1 synapses the ability to easily undergo NMDA-mediated LTP and LTD, which is essential for some forms of explicit learning in mammals. Providing a comprehensive kinetic model that can be used for running computer simulations of the synaptic transmission process is currently a major challenge. Here, we propose a compartmentalized kinetic model for CA3-CA1 synaptic transmission. Our major goal was to tune our model in order to predict the functional impact caused by disease associated variants of NMDA receptors related to severe cognitive impairment. Indeed, for variants Glu413Gly and Cys461Phe, our model predicts negative shifts in the glutamate affinity and changes in the kinetic behavior, consistent with experimental data. These results point to the predictive power of this multiscale viewpoint, which aims to integrate the quantitative kinetic description of large interaction networks typical of system biology approaches with a focus on the quality of a few, key, molecular interactions typical of structural biology ones
000904557 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904557 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904557 7001_ $$0P:(DE-Juel1)186965$$aRibeiro, Rui$$b1$$eCorresponding author$$ufzj
000904557 7001_ $$0P:(DE-Juel1)165199$$aGiorgetti, Alejandro$$b2$$eCorresponding author$$ufzj
000904557 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms22041536$$gVol. 22, no. 4, p. 1536 -$$n4$$p1536 -$$tInternational journal of molecular sciences$$v22$$x1422-0067$$y2021
000904557 8564_ $$uhttps://juser.fz-juelich.de/record/904557/files/ijms-22-01536-v2.pdf$$yOpenAccess
000904557 909CO $$ooai:juser.fz-juelich.de:904557$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904557 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000904557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186965$$aForschungszentrum Jülich$$b1$$kFZJ
000904557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165199$$aForschungszentrum Jülich$$b2$$kFZJ
000904557 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904557 9141_ $$y2021
000904557 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000904557 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904557 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2019$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904557 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000904557 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000904557 920__ $$lyes
000904557 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000904557 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000904557 980__ $$ajournal
000904557 980__ $$aVDB
000904557 980__ $$aUNRESTRICTED
000904557 980__ $$aI:(DE-Juel1)IAS-5-20120330
000904557 980__ $$aI:(DE-Juel1)INM-9-20140121
000904557 9801_ $$aFullTexts